Wang J, Zhang L, Cao H, Shi X, Zhang X, Gao Z, Ikeda K, Yan T, Jia Y, Xu F. Silibinin improves L-cell mass and function through an estrogen receptor-mediated antioxidative mechanism.
PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022;
99:154022. [PMID:
35255283 DOI:
10.1016/j.phymed.2022.154022]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/05/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND
Silibinin, a major component of milk thistle extract silymarin, promotes hypoglycemia by activating estrogen receptor (ER) α and β-mediated pathways in pancreatic β-cells. Glucagon-like peptide-1 (GLP-1) is the enteroendocrine peptide produced in L-cells, and it controls glucose homeostasis through multiple pathways. The effect of silibinin on L-cell mass and function is still unknown.
PURPOSE
The protective effect of silibinin on palmitate (PA)-treated intestinal L-cell line GLUTag cells and the SHRSP•Z-Leprfa/Izm-Dmcr (SP•ZF) diabetic rat model was investigated in current study.
METHODS
After pre-incubation with 50 μM silibinin for 4 h, GLUTag cells were treated with 0.125 mM PA. MTT, Annexin V/PI apoptosis, Hoechst 33342 staining, western blot, DCFH-DA, GLP-1 ELISA, qRT-PCR and immunofluorescence analyses were undertaken to determine ER-dependent protection of silibinin against PA-induced cellular damage. The differential protein expression of GLUTag cells under different treatments was examined by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). The SP•ZF diabetic rat model was chosen for in vivo study. After 4 weeks of gastric gavage with 100 or 300 mg kg-1 of silibinin, the physiological indexes of the rats were measured. Cells expressing GLP-1, 8‑hydroxy-2'-deoxyguanosine (8-OHdG), ERα, and/or ERβ in duodenum tissues were detected by immunofluorescence.
RESULTS
The current study showed that the GLUTag cells preincubated with silibinin activated the transcription factor nuclear erythroid-2 like factor-2 (Nrf2)-antioxidant pathway, reduced reactive oxygen species (ROS) generation, and improved cell survival and GLP-1 content, while the antioxidative effect of silibinin was blocked by the selective ERα antagonist MPP or ERβ antagonist PHTPP in GLUTag cells. Our proteomics data further revealed that ERα or β inactivation reduced glutathione peroxide and proteins associated with endocytosis and reproduction, thus at least partially reversing the protective effect of silibinin. SP•ZF rats received silibinin treatment showed increased serum GLP-1 content and improved glucose homeostasis. Furthermore, silibinin upregulated ERα and β levels and reduced the level of 8-OHdG in GLP-1-positive cells.
CONCLUSIONS
Our study showed that silibinin improved L-cell mass and function through an ER-mediated antioxidant pathway, and the proteomics analysis revealed for the first time the differential regulation of proteins by PA and silibinin in GLUTag cells.
Collapse