1
|
Martins MSDA, Carneiro WF, Monteiro KS, Souza SPD, Vianna ARDCB, Murgas LDS. Metabolic effects of physical exercise on zebrafish (Danio rerio) fed a high-fat diet. J Comp Physiol B 2024; 194:793-804. [PMID: 39085644 DOI: 10.1007/s00360-024-01577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/19/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
The present study aimed to establish zebrafish as an experimental model for investigations into obesity and physical exercise, as well as to assess the effects of these factors on metabolism. The experiment spanned twelve weeks, comprising a feeding trial during which the last four weeks incorporated a physical exercise protocol. This protocol involved placing fifteen animals in a five-liter aquarium, where they were subjected to swimming at an approximate speed of 0.08 m/s for 30 min daily. Throughout the experiment, histological analyses of visceral, subcutaneous, and hepatic adipose tissues were conducted, along with biochemical analyses of total cholesterol and its fractions, triglycerides, glucose, lactate, and alanine aminotransferase (ALT) levels. Additionally, oxidative stress markers, such as reactive oxygen species (ROS) levels, superoxide dismutase (SOD) activity, and catalase activity and the formation of thiobarbituric acid-reactive substances, were investigated. The results revealed that the group fed a high-fat diet exhibited an increase in ROS production and SOD activity. In contrast, the group administered the high-fat diet and subjected to physical exercise demonstrated a notable reduction in visceral adipocyte area, hepatic steatosis levels, ALT levels, and SOD activity. These findings indicate that physical exercise has a positive effect on obesity and oxidative stress in zebrafish, providing promising evidence for future investigations in this field.
Collapse
Affiliation(s)
| | - William Franco Carneiro
- Graduate Program in Veterinary Sciences, Department of Veterinary Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Kianne Silva Monteiro
- Graduate Program in Veterinary Sciences, Department of Veterinary Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Stefania Priscilla de Souza
- Enzymology Laboratory, Department of Animal Science, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | | | - Luis David Solis Murgas
- Graduate Program in Veterinary Sciences, Department of Veterinary Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil.
- Enzymology Laboratory, Department of Animal Science, Federal University of Lavras, Lavras, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Baptista RC, Ferrocino I, Pavani M, Guerreiro TM, Câmara AA, Lang É, Dos Santos JLP, Catharino RR, Alves Filho EG, Rodrigues S, de Brito ES, Caturla MYR, Sant'Ana AS, Cocolin L. Microbiota diversity of three Brazilian native fishes during ice and frozen storage. Food Microbiol 2024; 124:104617. [PMID: 39244369 DOI: 10.1016/j.fm.2024.104617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 09/09/2024]
Abstract
This study aimed to assess the bacterial microbiota involved in the spoilage of pacu (Piaractus mesopotamics), patinga (female Piaractus mesopotamics x male Piaractus brachypomus), and tambacu (female Colossoma macropomum × male Piaractus mesopotamics) during ice and frozen storage. Changes in the microbiota of three fish species (N = 22) during storage were studied through 16S rRNA amplicon-based sequencing and correlated with volatile organic compounds (VOCs) and metabolites assessed by nuclear magnetic resonance (NMR). Storage conditions (time and temperature) affected the microbiota diversity in all fish samples. Fish microbiota comprised mainly of Pseudomonas sp., Brochothrix sp., Acinetobacter sp., Bacillus sp., Lactiplantibacillus sp., Kocuria sp., and Enterococcus sp. The relative abundance of Kocuria, P. fragi, L. plantarum, Enterococcus, and Acinetobacter was positively correlated with the metabolic pathways of ether lipid metabolism while B. thermosphacta and P. fragi were correlated with metabolic pathways involved in amino acid metabolism. P. fragi was the most prevalent spoilage bacteria in both storage conditions (ice and frozen), followed by B. thermosphacta. Moreover, the relative abundance of identified Bacillus strains in fish samples stored in ice was positively correlated with the production of VOCs (1-hexanol, nonanal, octenol, and 2-ethyl-1-hexanol) associated with off-flavors. 1H NMR analysis confirmed that amino acids, acetic acid, and ATP degradation products increase over (ice) storage, and therefore considered chemical spoilage index of fish fillets.
Collapse
Affiliation(s)
- Rafaela C Baptista
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil; Department of Agricultural, Forest and Food Science, University of Turin, Grugliasco, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Science, University of Turin, Grugliasco, Italy
| | - Matheus Pavani
- Innovare Laboratory, Faculty of Pharmaceutical Science, University of Campinas, Campinas, SP, Brazil
| | - Tatiane M Guerreiro
- Innovare Laboratory, Faculty of Pharmaceutical Science, University of Campinas, Campinas, SP, Brazil
| | - Antonio A Câmara
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Émilie Lang
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Juliana L P Dos Santos
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Rodrigo R Catharino
- Innovare Laboratory, Faculty of Pharmaceutical Science, University of Campinas, Campinas, SP, Brazil
| | | | - Sueli Rodrigues
- Department of Food Technology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Magdevis Y R Caturla
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Science, University of Turin, Grugliasco, Italy
| |
Collapse
|
3
|
Degree of piRNA sharing and Piwi gene expression in the skeletal muscle of Piaractus mesopotamicus (pacu), Colossoma macropomum (tambaqui), and the hybrid tambacu. Comp Biochem Physiol A Mol Integr Physiol 2021; 264:111120. [PMID: 34822974 DOI: 10.1016/j.cbpa.2021.111120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022]
Abstract
PiRNAs are a class of small noncoding RNAs that, in their mature form, bind to Piwi proteins to repress transposable element activity. Besides their role in gametogenesis and genome integrity, recent evidence indicates their action in non-germinative tissues. We performed a global analysis of piRNA and Piwi gene expression in the skeletal muscle of juveniles pacu (Piaractus mesopotamicus), tambaqui (Colossoma macropomum), and the hybrid tambacu to evaluate the degree of piRNA sharing among these three genotypes. Total RNA was sequenced and analyzed using specific parameters of piRNAs by bioinformatics tools. piRNA and Piwi gene expression was analyzed by RT-qPCR. We detected 24 piRNA clusters common to the three genotypes, with eight shared between pacu and tambacu, three between pacu and tambaqui, and five between tambaqui and tambacu; seven, five, and four clusters were unique to pacu, tambacu, and tambaqui, respectively. Genomic localization and fold change values showed two clusters and 100 piRNAs shared among the three genotypes. The gene expression of four piRNAs was evaluated to validate our bioinformatics results. piRNAs from cluster 17 were higher in tambacu than pacu and piRNAs from cluster 18 were more highly expressed in tambacu than tambaqui and pacu. In addition, the expression of Piwis 1 and 2 was higher in tambacu and tambaqui than pacu. Our results open an important window to investigate whether these small noncoding RNAs benefit the hybrid in terms of faster growth and offer a new perspective on the function of piRNAs and Piwis in fish skeletal muscle.
Collapse
|
4
|
Postingel Quirino P, da Silva Rodrigues M, da Silva Cabral EM, de Siqueira-Silva DH, Mori RH, Butzge AJ, Nóbrega RH, Ninhaus-Silveira A, Veríssimo-Silveira R. The influence of increased water temperature on the duration of spermatogenesis in a neotropical fish, Astyanax altiparanae (Characiformes, Characidae). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:747-755. [PMID: 32889598 DOI: 10.1007/s10695-020-00869-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
In view of the established climate change scenario and the consequent changes in global temperature, it is essential to study its effects on animal spermatogenesis. Therefore, the aim of this study was to verify the duration of spermatogenesis at different temperatures. For this purpose, 96 male and adult specimens of Astyanax altiparanae were kept in a closed circulation system with water temperature stabilized at 27 °C and 32 °C. Subsequently, the specimens received pulses of BrdU (bromodeoxyuridine) at a concentration of 100 mg/kg/day for 2 consecutive days, and the samples were collected daily for a period of 15 days. Their testes were removed, fixed, processed in historesin, and sectioned in 3 μm, submitted to hematoxylin/eosin staining and to bromodeoxyuridine immunodetection. Partial results of the optimum temperature experiments allowed the classification of A. altiparanae spermatogenic cells in Aund, Adiff, and type B spermatogonia, spermatocytes, spermatids, and spermatozoa. The duration of spermatogenesis was determined as approximately 6 days for animals at a temperature of 27 °C and 1 day for animals at 32 °C. The elevated temperature was also responsible for increasing cell proliferation, resulting in an increase in the number of spermatocytes, spermatids, spermatozoa, and cell death (cell pyknotic). The duration of spermatogenesis in A. altiparanae was directly affected by the elevated water temperature, causing a reduction in the estimated time of spermatogenesis.
Collapse
Affiliation(s)
- Patricia Postingel Quirino
- Departamento de Biologia e Zootecnia. L.I.NEO - Laboratory of Neotropical Ichthyology, UNESP - Universidade Estadual Paulista "Júlio de Mesquita Filho", Câmpus de Ilha Solteira, Rua Monção, n 226, 15385-000, Ilha Solteira, São Paulo, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Instituto de Biociências de Botucatu (UNESP - IBB), R. Prof. Dr. Antonio Celso Wagner Zanin, 250, 18618-689, Botucatu, São Paulo, Brazil.
| | - Maira da Silva Rodrigues
- Departamento de Biologia e Zootecnia. L.I.NEO - Laboratory of Neotropical Ichthyology, UNESP - Universidade Estadual Paulista "Júlio de Mesquita Filho", Câmpus de Ilha Solteira, Rua Monção, n 226, 15385-000, Ilha Solteira, São Paulo, Brazil
| | - Elis Marina da Silva Cabral
- Departamento de Biologia e Zootecnia. L.I.NEO - Laboratory of Neotropical Ichthyology, UNESP - Universidade Estadual Paulista "Júlio de Mesquita Filho", Câmpus de Ilha Solteira, Rua Monção, n 226, 15385-000, Ilha Solteira, São Paulo, Brazil
| | - Diógenes Henrique de Siqueira-Silva
- Instituto de Estudo em Saúde e Biologicas (IESB), Research Group of Reproduction on Amazon Fish (GERPA/LaNec), UNIFESSPA - Universidade Federal do Sul e Sudeste do Para, Folha 31, Quadra 07, Lote especial s/n, 68.507-590, Marabá, Brazil
| | - Ricardo Hideo Mori
- Departamento de Biologia e Zootecnia. L.I.NEO - Laboratory of Neotropical Ichthyology, UNESP - Universidade Estadual Paulista "Júlio de Mesquita Filho", Câmpus de Ilha Solteira, Rua Monção, n 226, 15385-000, Ilha Solteira, São Paulo, Brazil
| | - Arno Juliano Butzge
- Departamento de Morfologia, Reproductive and Molecular Biology Group, UNESP - Universidade Estadual Paulista "Júlio de Mesquita Filho", Câmpus de Botucatu, Instituto de Biociências de Botucatu, R. Prof.Dr. Antonio Celso Wagner Zanin, 250, 18618-689, Botucatu, São Paulo, Brazil
| | - Rafael Henrique Nóbrega
- Departamento de Morfologia, Reproductive and Molecular Biology Group, UNESP - Universidade Estadual Paulista "Júlio de Mesquita Filho", Câmpus de Botucatu, Instituto de Biociências de Botucatu, R. Prof.Dr. Antonio Celso Wagner Zanin, 250, 18618-689, Botucatu, São Paulo, Brazil
| | - Alexandre Ninhaus-Silveira
- Departamento de Biologia e Zootecnia. L.I.NEO - Laboratory of Neotropical Ichthyology, UNESP - Universidade Estadual Paulista "Júlio de Mesquita Filho", Câmpus de Ilha Solteira, Rua Monção, n 226, 15385-000, Ilha Solteira, São Paulo, Brazil
| | - Rosicleire Veríssimo-Silveira
- Departamento de Biologia e Zootecnia. L.I.NEO - Laboratory of Neotropical Ichthyology, UNESP - Universidade Estadual Paulista "Júlio de Mesquita Filho", Câmpus de Ilha Solteira, Rua Monção, n 226, 15385-000, Ilha Solteira, São Paulo, Brazil.
| |
Collapse
|
5
|
Salomão RAS, De Paula TG, Zanella BTT, Carvalho PLPF, da Silva Duran BO, Valente JS, de Almeida Fantinatti BE, Fernandes AA, Barros MM, Mareco EA, Carvalho RF, Dos Santos VB, Dal-Pai-Silva M. The combination of resveratrol and exercise enhances muscle growth characteristics in pacu (Piaractus mesopotamicus). Comp Biochem Physiol A Mol Integr Physiol 2019; 235:46-55. [PMID: 31077846 DOI: 10.1016/j.cbpa.2019.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/15/2019] [Accepted: 05/02/2019] [Indexed: 02/08/2023]
Abstract
Pacu is a tropical fish with important value to aquaculture. During cellular metabolism, reactive oxygen species (ROS) are produced, which can influence muscle growth. Resveratrol is an effective antioxidant that scavenges ROS and can modulate physical performance preventing oxidative stress. We investigated the effects of resveratrol and exercise on pacu muscle growth characteristics. Four groups were used: fish fed with control diet /without exercise (C); fish fed with control diet/subjected to exercise (CE); fish fed resveratrol-supplemented diet/without exercise (R); and fish fed resveratrol-supplemented diet/subjected to exercise (RE). At 30 days, the RE group presented a significant increase in body weight, fewer muscle fibers in the 20-40 μm and more fibers in the >60 μm diameter class compared to the C group. At day 7, catalase activity decreased in CE and RE groups. Superoxide dismutase activity decreased only in the CE group. Myod and mtor gene expression was higher in R and RE and igf-1 was up-regulated in the RE group. Murf1a level decreased in CE, R, and RE, while sdha expression was higher in the RE group. We suggest that resveratrol in combination with exercise was beneficial for muscle growth and metabolism, increasing the expression levels of genes related to muscle anabolism and oxidative metabolism, besides the decrease of catabolic gene expression. Notably, all of these changes occurred together with muscle hypertrophy and increased body weight. Our results show a positive application for resveratrol in association with exercise as a strategy to improve the growth performance of juvenile pacus.
Collapse
Affiliation(s)
- Rondinelle Artur Simões Salomão
- Department of Morphology, Institute of Bioscience, Sao Paulo State University, UNESP, Botucatu, SP, Brazil; Aquaculture Center, CAUNESP, Sao Paulo State University, UNESP, Jaboticabal, SP, Brazil
| | | | | | | | | | - Jéssica Silvino Valente
- Department of Morphology, Institute of Bioscience, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | | | - Ana Angélica Fernandes
- Department of Chemistry and Biochemistry, Institute of Bioscience, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Margarida Maria Barros
- Department of Breeding and Animal Nutrition, FMVZ, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Edson Assunção Mareco
- Department of Biology, University of Western Sao Paulo, UNOESTE, Presidente Prudente, SP, Brazil
| | - Robson Francisco Carvalho
- Department of Morphology, Institute of Bioscience, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | | | - Maeli Dal-Pai-Silva
- Department of Morphology, Institute of Bioscience, Sao Paulo State University, UNESP, Botucatu, SP, Brazil; Aquaculture Center, CAUNESP, Sao Paulo State University, UNESP, Jaboticabal, SP, Brazil.
| |
Collapse
|