1
|
Pei Y, Jin J, Wu Q, Liang X, Lv C, Guo J. Cold Acclimation and Supercooling Capacity of Agasicles hygrophila Adults. INSECTS 2023; 14:58. [PMID: 36661986 PMCID: PMC9867054 DOI: 10.3390/insects14010058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Agasicles hygrophila Selman and Vogt is used in the biological control of the invasive weed Alternanthera philoxeroides (Mart.) Griseb. However, with the northward establishment of A. philoxeroides in China, the weak adaptivity of A. hygrophila to cold weather has resulted in the ineffective control of A. philoxeroides in northern China. Cold acclimation can significantly enhance insect cold tolerance, enabling them to cope with more frequent climate fluctuations. To improve the biological control efficacy of A. hygrophila in cold climates, we compared the effects of rapid cold hardening and acclimation on A. hygrophila under laboratory conditions. On initially transferring adults from 26 to -10 °C for 2 h, mortality reached 80%. However, when pre-exposed to 0 °C for 2 h and then transferred to -10 °C for 2 h, adult mortality was reduced to 36.67%. These findings indicate that cold acclimation can enhance the cold tolerance of A. hygrophila under laboratory conditions. However, the beneficial cold acclimation effects waned after more than 15 min of recovery at 26 °C. Exposure to 15 °C for 24 h or gradual cooling from 0 to -10 °C at 1 °C·min-1 also induced cold acclimation, indicating that long-term cold and fluctuating cold acclimation are also potentially effective strategies for enhancing low-temperature tolerance.
Collapse
Affiliation(s)
- Yiming Pei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jisu Jin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiang Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518100, China
| | - Xiaocui Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chen Lv
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianying Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Pfenninger M, Foucault Q, Waldvogel AM, Feldmeyer B. Selective effects of a short transient environmental fluctuation on a natural population. Mol Ecol 2023; 32:335-349. [PMID: 36282585 DOI: 10.1111/mec.16748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 09/21/2022] [Accepted: 10/21/2022] [Indexed: 01/11/2023]
Abstract
Natural populations experience continuous and often transient changes of environmental conditions. These in turn may result in fluctuating selection pressures leading to variable demographic and evolutionary population responses. Rapid adaptation as short-term response to a sudden environmental change has in several cases been attributed to polygenic traits, but the underlying genomic dynamics and architecture are poorly understood. In this study, we took advantage of a natural experiment in an insect population of the non-biting midge Chironomus riparius by monitoring genome-wide allele frequencies before and after a cold snap event. Whole genome pooled sequencing of time series samples revealed 10 selected haplotypes carrying ancient polymorphisms, partially with signatures of balancing selection. By constantly cold exposing genetically variable individuals in the laboratory, we could demonstrate with whole genome resequencing (i) that among the survivors, the same alleles rose in frequency as in the wild, and (ii) that the identified variants additively predicted fitness (survival time) of its bearers. Finally, by simultaneously sequencing the genome and the transcriptome of cold exposed individuals we could tentatively link some of the selected SNPs to the cis- and trans-regulation of genes and pathways known to be involved in cold response of insects, such as cytochrome P450 and fatty acid metabolism. Altogether, our results shed light on the strength and speed of selection in natural populations and the genomic architecture of its underlying polygenic trait. Population genomic time series data thus appear as promising tool for measuring the selective tracking of fluctuating selection in natural populations.
Collapse
Affiliation(s)
- Markus Pfenninger
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany.,LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany.,Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Quentin Foucault
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Ann-Marie Waldvogel
- Department of Ecological Genomics, Institute of Zoology, University of Cologne, Köln, Germany
| | - Barbara Feldmeyer
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Qi X, Wang Y, Zhang G, Cao S, Xu P, Ren X, Mansour A, Niu C. Transcriptome analysis uncovers different avenues for manipulating cold performance in Chrysomya megacephala (Diptera, Calliphoridae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:1-12. [PMID: 35225171 DOI: 10.1017/s0007485321001073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Temperature strongly impacts the rates of physiological and biochemical processes, which in turn can determine the survival and population size of insects. At low temperatures performance is limited, however, cold tolerance and performance at low temperature can be improved after short- or long-term acclimation in many insect species. To understand mechanisms underlying acclimation, we sequenced and compared the transcriptome of the blowfly Chrysomya megacephala under rapid cold hardening (RCH) and long-term cold acclimation (LCA) conditions. The RCH response was dominated by genes related to immune response, spliceosome, and protein processing in endoplasmic reticulum with up-regulation during recovery from RCH. In contrast, LCA was associated with genes related to carbohydrate metabolism and cytoskeleton branching and stabilizing. Meanwhile, mRNA levels of genes related to glycerophospholipid metabolism, and some heat shock proteins (Hsps) were collectively up-regulated by both RCH and LCA. There were more genes and pathway adjustments associated with LCA than RCH. Overall, the transcriptome data provide basic information of molecular mechanisms underpinning the RCH and LCA response. The partly independent molecular responses to RCH and LCA suggest that several avenues for manipulating cold performance exist and RCH might be more effective as it only triggers fewer genes and affects the general metabolisms less. These observations provide some appropriate methods to improve cold tolerance of C. megacephala, and hold promise for developing an extended use of mass-reared C. megacephala with better cold performance as a pollinator of crops at low temperatures.
Collapse
Affiliation(s)
- Xuewei Qi
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Yaohui Wang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Guijian Zhang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Shuai Cao
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Penghui Xu
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Xueming Ren
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Abdelaziz Mansour
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan430070, China
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, 12613Giza, Egypt
| | - Changying Niu
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan430070, China
| |
Collapse
|
4
|
Iqbal J, Zhang XX, Chang YW, Du YZ. Differential Response of Leafminer Flies Liriomyza trifolii (Burgess) and Liriomyza sativae (Blanchard) to Rapid Cold Hardening. INSECTS 2021; 12:insects12111041. [PMID: 34821841 PMCID: PMC8625278 DOI: 10.3390/insects12111041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Liriomyza trifolii (Burgess) and L. sativae (Blanchard) are closely-related, polyphagous leafminers that occur worldwide and presumably compete with each other. In this study, we evaluated the response of pupae and adults from both species to acute (2 h) cold exposures. The results were used to identify the lethal temperature for 80% of the population (LT80) for each species. In a separate set of experiments, insects were cooled to one of six nonlethal temperatures (0–5 °C) for 4 h and then cooled to the LT80 for 2 h to evaluate their rapid cold hardening (RCH) response. L. trifolii exhibited stronger cold tolerance than L. sativae; furthermore, the supercooling point of L. trifolii was significantly lower than that of L. sativae. RCH was induced in pupae of both species at a range of low temperatures (0–5 °C), and L. sativae pupae showed a more robust RCH response (e.g., lower supercooling pointand more durable RCH) than L. trifolii pupae. Our results indicate that subtle differences in RCH and basal cold tolerance impact the competitiveness of the two leafminers. Abstract Rapid cold hardening (RCH) is a rapid and critical adaption of insects to sudden temperature changes but is often overlooked or underestimated as a component of survival. Thus, interspecific comparisons of RCH are needed to predict how phenotypes will adapt to temperature variability. RCH not only enhances cold survival but also protects against non-lethal cold injury by preserving essential functions such as locomotion, reproduction, and energy balance. This study investigated the difference in basal cold tolerance and RCH capacity of L. trifolii and L. sativae. In both species, the cold tolerance of pupae was significantly enhanced after short-term exposure to moderately cold temperatures. The effect of RCH last for 4 h in L. sativae but only 2 h in L. trifolii. Interestingly, L. trifolii adults had a RCH response but L. sativae adults failed to acclimate. Short-term acclimation also lowered the supercooling point significantly in the pupae of both species. Based on these results, we propose a hypothesis that these differences will eventually affect their competition in the context of climate change. This study also provides the basis for future metabolomic and transcriptomic studies that may ultimately uncover the underlying mechanisms of RCH and interspecific competition between L. trifolii and L. sativae.
Collapse
Affiliation(s)
- Junaid Iqbal
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; (J.I.); (X.-X.Z.); (Y.-W.C.)
| | - Xiao-Xiang Zhang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; (J.I.); (X.-X.Z.); (Y.-W.C.)
| | - Ya-Wen Chang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; (J.I.); (X.-X.Z.); (Y.-W.C.)
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; (J.I.); (X.-X.Z.); (Y.-W.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
5
|
Garcia MJ, Littler AS, Sriram A, Teets NM. Distinct cold tolerance traits independently vary across genotypes in Drosophila melanogaster. Evolution 2020; 74:1437-1450. [PMID: 32463118 DOI: 10.1111/evo.14025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 05/25/2020] [Indexed: 12/27/2022]
Abstract
Cold tolerance, the ability to cope with low temperature stress, is a critical adaptation in thermally variable environments. An individual's cold tolerance comprises several traits including minimum temperatures for growth and activity, ability to survive severe cold, and ability to resume normal function after cold subsides. Across species, these traits are correlated, suggesting they were shaped by shared evolutionary processes or possibly share physiological mechanisms. However, the extent to which cold tolerance traits and their associated mechanisms covary within populations has not been assessed. We measured five cold tolerance traits-critical thermal minimum, chill coma recovery, short- and long-term cold tolerance, and cold-induced changes in locomotor behavior-along with cold-induced expression of two genes with possible roles in cold tolerance (heat shock protein 70 and frost)-across 12 lines of Drosophila melanogaster derived from a single population. We observed significant genetic variation in all traits, but few were correlated across genotypes, and these correlations were sex-specific. Further, cold-induced gene expression varied by genotype, but there was no evidence supporting our hypothesis that cold-hardy lines would have either higher baseline expression or induction of stress genes. These results suggest cold tolerance traits possess unique mechanisms and have the capacity to evolve independently.
Collapse
Affiliation(s)
- Mark J Garcia
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky, 40546
| | - Aerianna S Littler
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky, 40546
| | - Aditya Sriram
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky, 40546
| | - Nicholas M Teets
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky, 40546
| |
Collapse
|
6
|
Teets NM, Gantz JD, Kawarasaki Y. Rapid cold hardening: ecological relevance, physiological mechanisms and new perspectives. ACTA ACUST UNITED AC 2020; 223:223/3/jeb203448. [PMID: 32051174 DOI: 10.1242/jeb.203448] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rapid cold hardening (RCH) is a type of phenotypic plasticity that allows ectotherms to quickly enhance cold tolerance in response to brief chilling (lasting minutes to hours). In this Review, we summarize the current state of knowledge of this important phenotype and provide new directions for research. As one of the fastest adaptive responses to temperature known, RCH allows ectotherms to cope with sudden cold snaps and to optimize their performance during diurnal cooling cycles. RCH and similar phenotypes have been observed across a diversity of ectotherms, including crustaceans, terrestrial arthropods, amphibians, reptiles, and fish. In addition to its well-defined role in enhancing survival to extreme cold, RCH also protects against nonlethal cold injury by preserving essential functions following cold stress, such as locomotion, reproduction, and energy balance. The capacity for RCH varies across species and across genotypes of the same species, indicating that RCH can be shaped by selection and is likely favored in thermally variable environments. Mechanistically, RCH is distinct from other rapid stress responses in that it typically does not involve synthesis of new gene products; rather, the existing cellular machinery regulates RCH through post-translational signaling mechanisms. However, the protective mechanisms that enhance cold hardiness are largely unknown. We provide evidence that RCH can be induced by multiple triggers in addition to low temperature, and that rapidly induced tolerance and cross-tolerance to a variety of environmental stressors may be a general feature of stress responses that requires further investigation.
Collapse
Affiliation(s)
- Nicholas M Teets
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - J D Gantz
- Biology Department, Hendrix College, Conway, AK 72032, USA
| | - Yuta Kawarasaki
- Department of Biology, Gustavus Adolphus College, Saint Peter, MN 56082, USA
| |
Collapse
|
7
|
Stone HM, Erickson PA, Bergland AO. Phenotypic plasticity, but not adaptive tracking, underlies seasonal variation in post-cold hardening freeze tolerance of Drosophila melanogaster. Ecol Evol 2020; 10:217-231. [PMID: 31988724 PMCID: PMC6972814 DOI: 10.1002/ece3.5887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/27/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022] Open
Abstract
In temperate regions, an organism's ability to rapidly adapt to seasonally varying environments is essential for its survival. In response to seasonal changes in selection pressure caused by variation in temperature, humidity, and food availability, some organisms exhibit plastic changes in phenotype. In other cases, seasonal variation in selection pressure can rapidly increase the frequency of genotypes that offer survival or reproductive advantages under the current conditions. Little is known about the relative influences of plastic and genetic changes in short-lived organisms experiencing seasonal environmental fluctuations. Cold hardening is a seasonally relevant plastic response in which exposure to cool, but nonlethal, temperatures significantly increases the organism's ability to later survive at freezing temperatures. In the present study, we demonstrate seasonal variation in cold hardening in Drosophila melanogaster and test the extent to which plasticity and adaptive tracking underlie that seasonal variation. We measured the post-cold hardening freeze tolerance of flies from outdoor mesocosms over the summer, fall, and winter. We bred outdoor mesocosm-caught flies for two generations in the laboratory and matched each outdoor cohort to an indoor control cohort of similar genetic background. We cold hardened all flies under controlled laboratory conditions and then measured their post-cold hardening freeze tolerance. Comparing indoor and field-caught flies and their laboratory-reared G1 and G2 progeny allowed us to determine the roles of seasonal environmental plasticity, parental effects, and genetic changes on cold hardening. We also tested the relationship between cold hardening and other factors, including age, developmental density, food substrate, presence of antimicrobials, and supplementation with live yeast. We found strong plastic responses to a variety of field- and laboratory-based environmental effects, but no evidence of seasonally varying parental or genetic effects on cold hardening. We therefore conclude that seasonal variation in post-cold hardening freeze tolerance results from environmental influences and not genetic changes.
Collapse
|