1
|
Labine LM, Pereira EAO, Kleywegt S, Jobst KJ, Simpson AJ, Simpson MJ. Environmental metabolomics uncovers oxidative stress, amino acid dysregulation, and energy impairment in Daphnia magna with exposure to industrial effluents. ENVIRONMENTAL RESEARCH 2023; 234:116512. [PMID: 37394164 DOI: 10.1016/j.envres.2023.116512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/29/2023] [Accepted: 06/24/2023] [Indexed: 07/04/2023]
Abstract
Anthropogenic activities are regarded as point sources of pollution entering freshwater bodies worldwide. With over 350,000 chemicals used in manufacturing, wastewater treatment and industrial effluents are comprised of complex mixtures of organic and inorganic pollutants of known and unknown origins. Consequently, their combined toxicity and mode of action are not well understood in aquatic organisms such as Daphnia magna. In this study, effluent samples from wastewater treatment and industrial sectors were used to examine molecular-level perturbations to the polar metabolic profile of D. magna. To determine if the industrial sector and/or the effluent chemistries played a role in the observed biochemical responses, Daphnia were acutely (48 h) exposed to undiluted (100%) and diluted (10, 25, and 50%) effluent samples. Endogenous metabolites were extracted from single daphnids and analyzed using targeted mass spectrometry-based metabolomics. The metabolic profile of Daphnia exposed to effluent samples resulted in significant separation compared to the unexposed controls. Linear regression analysis determined that no single pollutant detected in the effluents was significantly correlated with the responses of metabolites. Significant perturbations were uncovered across many classes of metabolites (amino acids, nucleosides, nucleotides, polyamines, and their derivatives) which serve as intermediates in keystone biochemical processes. The combined metabolic responses are consistent with oxidative stress, disruptions to energy metabolism, and protein dysregulation which were identified through biochemical pathway analysis. These results provide insight into the molecular processes driving stress responses in D. magna. Overall, we determined that the metabolic profile of Daphnia could not be predicted by the chemical composition of environmentally relevant mixtures. The findings of this study demonstrate the advantage of metabolomics in conjunction with chemical analyses to assess the interactions of industrial effluents. This work further demonstrates the ability of environmental metabolomics to characterize molecular-level perturbations in aquatic organisms exposed to complex chemical mixtures directly.
Collapse
Affiliation(s)
- L M Labine
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - E A Oliveira Pereira
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - S Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON, M4V 1M2, Canada
| | - K J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - A J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - M J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
2
|
Yin S, Jin W, Zhou X, Han W, Gao S, Chen C, Ding W, He Z, Chen Y, Jiang G. Enhancing harvest of biodiesel-promising microalgae using Daphnia domesticated by amino acids. ENVIRONMENTAL RESEARCH 2022; 212:113465. [PMID: 35594959 DOI: 10.1016/j.envres.2022.113465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Mass production of microalgal biodiesel is hindered by microalgae harvesting efficiency and costs. In this study, Daphnia domesticated by amino acids were used to harvest microalgae via ingesting. The main factors (density of Daphnia, salinity, pH, light-environment, temperature and algal concentration) that were conducive to Daphnia feeding were optimized. Under the optimal condition, Microalgae-feeding Daphnia were domesticated by adding D-glutamic acid and L-cysteine as stimulating factors. After that, the ingestion rate of domesticated Daphnia increased by 24.93%. The presence of Daphnia as a predator can induce microalgae to mass into clusters. Combining Daphnia feeding and the inductive defense flocculation of microalgae, the harvesting rate of mixed algae (Chlorella pyrenoidosa and Scenedesmus obliquus) reached over 95% after 9 h. Overall, this work suggested that Daphnia feeding process is a green and economical approach for microalgae harvesting.
Collapse
Affiliation(s)
- Shiyu Yin
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Wenbiao Jin
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China.
| | - Xu Zhou
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China.
| | - Wei Han
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Shuhong Gao
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 150090, Harbin, China
| | - Wanqing Ding
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Zhongqi He
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Yidi Chen
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, NSW, 2522, Wollongong, Australia
| |
Collapse
|
3
|
Guihur A, Fauvet B, Finka A, Quadroni M, Goloubinoff P. Quantitative proteomic analysis to capture the role of heat-accumulated proteins in moss plant acquired thermotolerance. PLANT, CELL & ENVIRONMENT 2021; 44:2117-2133. [PMID: 33314263 PMCID: PMC8359368 DOI: 10.1111/pce.13975] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 05/08/2023]
Abstract
At dawn of a scorching summer day, land plants must anticipate upcoming extreme midday temperatures by timely establishing molecular defences that can keep heat-labile membranes and proteins functional. A gradual morning pre-exposure to increasing sub-damaging temperatures induces heat-shock proteins (HSPs) that are central to the onset of plant acquired thermotolerance (AT). To gain knowledge on the mechanisms of AT in the model land plant Physcomitrium patens, we used label-free LC-MS/MS proteomics to quantify the accumulated and depleted proteins before and following a mild heat-priming treatment. High protein crowding is thought to promote protein aggregation, whereas molecular chaperones prevent and actively revert aggregation. Yet, we found that heat priming (HP) did not accumulate HSP chaperones in chloroplasts, although protein crowding was six times higher than in the cytosol. In contrast, several HSP20s strongly accumulated in the cytosol, yet contributing merely 4% of the net mass increase of heat-accumulated proteins. This is in poor concordance with their presumed role at preventing the aggregation of heat-labile proteins. The data suggests that under mild HP unlikely to affect protein stability. Accumulating HSP20s leading to AT, regulate the activity of rare and specific signalling proteins, thereby preventing cell death under noxious heat stress.
Collapse
Affiliation(s)
- Anthony Guihur
- Department of Plant Molecular Biology, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Bruno Fauvet
- Department of Plant Molecular Biology, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Andrija Finka
- Department of Ecology, Agronomy and AquacultureUniversity of ZadarZadarCroatia
| | | | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
4
|
Jeong TY, Simpson MJ. Endocrine Disruptor Exposure Causes Infochemical Dysregulation and an Ecological Cascade from Zooplankton to Algae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3845-3854. [PMID: 33617259 DOI: 10.1021/acs.est.0c07847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Endocrine disruption is intimately linked to controlling the population of pollutant-exposed organisms through reproduction and development dysregulation. This study investigated how endocrine disruption in a predator organism could affect prey species biology through infochemical communication. Daphnia magna and Chlorella vulgaris were chosen as model prey and predator planktons, respectively, and fenoxycarb was used for disrupting the endocrine system of D. magna. Hormones as well as endo- and exometabolomes were extracted from daphnids and algal cells and their culture media and analyzed using liquid chromatography with tandem mass spectrometry. Biomolecular perturbations of D. magna under impaired offspring production and hormone dysregulation were observed. Differential biomolecular responses of the prey C. vulgaris, indicating changes in methylation and infochemical communication, were subsequently observed under the exposure to predator culture media, containing infochemicals released from the reproducibly normal and abnormal D. magna, as results of fenoxycarb exposure. The observed cross-species transfer of the endocrine disruption consequences, initiated from D. magna, and mediated through infochemical communication, demonstrates a novel discovery and emphasizes the broader ecological risk of endocrine disruptors beyond reproduction disruption in target organisms.
Collapse
Affiliation(s)
- Tae-Yong Jeong
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | - Myrna J Simpson
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| |
Collapse
|
5
|
Bownik A, Szabelak A. Short-term effects of pesticide fipronil on behavioral and physiological endpoints of Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-13091-6. [PMID: 33638071 PMCID: PMC8241664 DOI: 10.1007/s11356-021-13091-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/17/2021] [Indexed: 05/13/2023]
Abstract
Fipronil (FIP) is an organic pesticide with many practical uses. Although some results indicated toxic effects in some terrestrial and aquatic animal species, little is known on its influence on behavioral and physiological endpoints of cladocerans. The aim of our study was to determine the short-term effects of FIP at concentrations of 0.1 μg/L, 1 μg/L, 10 μg/L, and 100 μg/L on Daphnia magna sublethal indices: behavioral (swimming speed, distance traveled) and physiological endpoints (heart rate, post-abdominal claw activity and thoracic limb movements). The results showed that FIP induced reduction of swimming speed and distance traveled in a concentration- and time-dependent manner at all the concentrations used. The lowest concentration of the insecticide temporarily stimulated post-abdominal claw activity after 24 h and thoracic limb activity after 48 h; however, the highest concentrations reduced all the studied physiological endpoints. IC50 values showed that thoracic limb activity, swimming speed, and distance traveled were most sensitive to FIP after 24-h exposure. The most sensitive parameter after 48 h and 72 h was swimming speed and post-abdominal claw activity, respectively. The study indicated that (i) behavioral and physiological endpoints of Daphnia magna are reliable and valuable sublethal indicators of toxic alterations induced by FIP; however, they respond with different sensitivity at various times of exposure, (ii) FIP may alter cladoceran behavior and physiological processes at concentrations detected in the aquatic environment; therefore, it should be considered as an ecotoxicological hazard to freshwater cladocerans.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland.
| | - Aleksandra Szabelak
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| |
Collapse
|
6
|
Effects of L-proline on cellular responses of hen erythrocytes subjected to thermal stress. J Therm Biol 2021; 96:102855. [PMID: 33627283 DOI: 10.1016/j.jtherbio.2021.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/02/2021] [Accepted: 01/12/2021] [Indexed: 11/24/2022]
Abstract
Little is known on the protective effects of L-proline on hen erythrocytes. The aim of the study was to determine the protective effects of this amino acid at concentrations of 50 μg/mL, 100 μg/mL, 200 μg/mL in hen erythrocytes subjected to temperatures 41 °C, 43 °C and 45 °C for 1 h and 4 h. The following cellular parameters were determined: viability, morphological alterations, caspase 3/7 activity, heat shock protein HSP70 1A activity and glutathione level. The results showed that exposure to 43 °C and 45 °C resulted in a decrease of viability and increased morphological alterations of the non-treated erythrocytes. Caspase 3/7 activity was increased only at 45 °C, however HSP70 1A activity and glutathione level were increased in the temperature-dependent manner. On the other hand, erythrocytes additionally exposed to L-proline showed alterations of the parameters when compared to the non-treated cells. L-proline at 50 μg/mL and 100 μg/mL increased caspase 3/7 activity at both 41 °C and 43 °C, however it was less augmented at all the concentrations at 45 °C. Glutathione level was decreased in heat-stressed (at 43 °C and 45 °C) hen erythrocytes treated with L-proline (at 50 μg/mL and 100 μg/mL) but it was increased at 200 μg/mL. HSP70 1A activity was augmented in a concentration- and temperature-dependent manner. The results indicate that proapoptotic or antiapoptotic effects of L-proline depend on its concentration and temperature of heat stress and thermoprotective effects induced by the amino acid on some parameters in hen erythrocytes may be a result of stimulation of antioxidative defense and stimulation of HSP70 1A activity.
Collapse
|
7
|
Kowal K, Tkaczyk A, Pierzchała M, Bownik A, Ślaska B. Identification of Mitochondrial DNA (NUMTs) in the Nuclear Genome of Daphnia magna. Int J Mol Sci 2020; 21:E8725. [PMID: 33218217 PMCID: PMC7699184 DOI: 10.3390/ijms21228725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 01/30/2023] Open
Abstract
This is the first study in which the Daphnia magna (D. magna) nuclear genome (nDNA) obtained from the GenBank database was analyzed for pseudogene sequences of mitochondrial origin. To date, there is no information about pseudogenes localized in D. magna genome. This study aimed to identify NUMTs, their length, homology, and location for potential use in evolutionary studies and to check whether their occurrence causes co-amplification during mitochondrial genome (mtDNA) analyses. Bioinformatic analysis showed 1909 fragments of the mtDNA of D. magna, of which 1630 were located in ten linkage groups (LG) of the nDNA. The best-matched NUMTs covering >90% of the gene sequence have been identified for two mt-tRNA genes, and they may be functional nuclear RNA molecules. Isolating the total DNA in mtDNA studies, co-amplification of nDNA fragments is unlikely in the case of amplification of the whole tRNA genes as well as fragments of other genes. It was observed that TRNA-MET fragments had the highest level of sequence homology, thus they could be evolutionarily the youngest. The lowest homology was found in the D-loop-derived pseudogene. It may probably be the oldest NUMT incorporated into the nDNA; however, further analysis is necessary.
Collapse
Affiliation(s)
- Krzysztof Kowal
- Faculty of Animal Sciences and Bioeconomy, Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13 Str., 20-950 Lublin, Poland; (K.K.); (A.T.)
| | - Angelika Tkaczyk
- Faculty of Animal Sciences and Bioeconomy, Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13 Str., 20-950 Lublin, Poland; (K.K.); (A.T.)
| | - Mariusz Pierzchała
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36a Str., 05-552 Jastrzębiec, Poland;
| | - Adam Bownik
- Faculty of Environmental Biology, Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37 Str., 20-262 Lublin, Poland;
| | - Brygida Ślaska
- Faculty of Animal Sciences and Bioeconomy, Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13 Str., 20-950 Lublin, Poland; (K.K.); (A.T.)
| |
Collapse
|
8
|
Abdelnour SA, Swelum AA, Salama A, Al-Ghadi MQ, Qattan SYA, Abd El-Hack ME, Khafaga AF, Alhimaidi AR, Almutairi BO, Ammari AA, El-Saadony MT. The beneficial impacts of dietary phycocyanin supplementation on growing rabbits under high ambient temperature. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1815598] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Sameh A. Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ayman A. Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ali Salama
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Muath Q. Al-Ghadi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shaza Y. A. Qattan
- Department of Biological Sciences, Microbiology, Faculty of Science, King Abdulaziz University, Kingdom of Saudi Arabia, Jeddah
| | | | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - Ahmad R. Alhimaidi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bader O. Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Aiman A. Ammari
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|