1
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 4: evolution, thermal adaptation and unsupported theories of thermoregulation. Eur J Appl Physiol 2024; 124:147-218. [PMID: 37796290 DOI: 10.1007/s00421-023-05262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/13/2023] [Indexed: 10/06/2023]
Abstract
This review is the final contribution to a four-part, historical series on human exercise physiology in thermally stressful conditions. The series opened with reminders of the principles governing heat exchange and an overview of our contemporary understanding of thermoregulation (Part 1). We then reviewed the development of physiological measurements (Part 2) used to reveal the autonomic processes at work during heat and cold stresses. Next, we re-examined thermal-stress tolerance and intolerance, and critiqued the indices of thermal stress and strain (Part 3). Herein, we describe the evolutionary steps that endowed humans with a unique potential to tolerate endurance activity in the heat, and we examine how those attributes can be enhanced during thermal adaptation. The first of our ancestors to qualify as an athlete was Homo erectus, who were hairless, sweating specialists with eccrine sweat glands covering almost their entire body surface. Homo sapiens were skilful behavioural thermoregulators, which preserved their resource-wasteful, autonomic thermoeffectors (shivering and sweating) for more stressful encounters. Following emigration, they regularly experienced heat and cold stress, to which they acclimatised and developed less powerful (habituated) effector responses when those stresses were re-encountered. We critique hypotheses that linked thermoregulatory differences to ancestry. By exploring short-term heat and cold acclimation, we reveal sweat hypersecretion and powerful shivering to be protective, transitional stages en route to more complete thermal adaptation (habituation). To conclude this historical series, we examine some of the concepts and hypotheses of thermoregulation during exercise that did not withstand the tests of time.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 2: physiological measurements. Eur J Appl Physiol 2023; 123:2587-2685. [PMID: 37796291 DOI: 10.1007/s00421-023-05284-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/14/2023] [Indexed: 10/06/2023]
Abstract
In this, the second of four historical reviews on human thermoregulation during exercise, we examine the research techniques developed by our forebears. We emphasise calorimetry and thermometry, and measurements of vasomotor and sudomotor function. Since its first human use (1899), direct calorimetry has provided the foundation for modern respirometric methods for quantifying metabolic rate, and remains the most precise index of whole-body heat exchange and storage. Its alternative, biophysical modelling, relies upon many, often dubious assumptions. Thermometry, used for >300 y to assess deep-body temperatures, provides only an instantaneous snapshot of the thermal status of tissues in contact with any thermometer. Seemingly unbeknownst to some, thermal time delays at some surrogate sites preclude valid measurements during non-steady state conditions. To assess cutaneous blood flow, immersion plethysmography was introduced (1875), followed by strain-gauge plethysmography (1949) and then laser-Doppler velocimetry (1964). Those techniques allow only local flow measurements, which may not reflect whole-body blood flows. Sudomotor function has been estimated from body-mass losses since the 1600s, but using mass losses to assess evaporation rates requires precise measures of non-evaporated sweat, which are rarely obtained. Hygrometric methods provide data for local sweat rates, but not local evaporation rates, and most local sweat rates cannot be extrapolated to reflect whole-body sweating. The objective of these methodological overviews and critiques is to provide a deeper understanding of how modern measurement techniques were developed, their underlying assumptions, and the strengths and weaknesses of the measurements used for humans exercising and working in thermally challenging conditions.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- College of Human Ecology, Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Dione M, Watkins RH, Aimonetti JM, Jourdain R, Ackerley R. Effects of skin moisturization on various aspects of touch showing differences with age and skin site. Sci Rep 2023; 13:17977. [PMID: 37863946 PMCID: PMC10589338 DOI: 10.1038/s41598-023-44895-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023] Open
Abstract
The human body is encompassed by a thin layer of tissue, the skin, which is heterogenous and highly specialized to protect the body and encode interactions with the external world. There is a fundamental scientific drive to understand its function, coupled with the need to preserve skin as we age, which impacts on our physiological and psychological well-being. In the present study, we aimed to define differences in touch perception between age groups and with skin cream application. We investigated touch on the finger, the forearm and cheek in younger (20-28 years, n = 22) and older (65-75 years, n = 22) females. We measured skin hydration, touch detection, finger spatial discrimination, forearm tactile pleasantness together with electrodermal activity, and perceptual ratings about cream use, skin dryness, and cosmetic habits. Glabrous finger skin became drier and touch performance was impaired with age, but these aspects were preserved in hairy skin. Skin moisturization immediately increased hydration levels, but did not significantly change touch perception. We also found that touch appreciation increased with age. We conclude that reduced finger capacity may impact self-evaluation of the skin and that long-term skin care strategies should focus on hydrating the hand to preserve touch capacities.
Collapse
Affiliation(s)
- Mariama Dione
- Aix Marseille Univ, LNC (Laboratoire de Neurosciences Cognitives - UMR 7291), CNRS, Marseille, France
| | - Roger Holmes Watkins
- Aix Marseille Univ, LNC (Laboratoire de Neurosciences Cognitives - UMR 7291), CNRS, Marseille, France
| | - Jean-Marc Aimonetti
- Aix Marseille Univ, LNC (Laboratoire de Neurosciences Cognitives - UMR 7291), CNRS, Marseille, France
| | | | - Rochelle Ackerley
- Aix Marseille Univ, LNC (Laboratoire de Neurosciences Cognitives - UMR 7291), CNRS, Marseille, France.
| |
Collapse
|
4
|
Vashisht D, Kamboj P, Raj CS, GM M, Sinha P, Baweja S, Sood A, Joshi R. Descriptive study of sweat dermatitis: A rare dermatoses not so rare in tropics. Med J Armed Forces India 2023. [DOI: 10.1016/j.mjafi.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
5
|
Rosinger AY. Extreme climatic events and human biology and health: A primer and opportunities for future research. Am J Hum Biol 2023; 35:e23843. [PMID: 36449411 PMCID: PMC9840683 DOI: 10.1002/ajhb.23843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Extreme climatic events are increasing in frequency, leading to hotter temperatures, flooding, droughts, severe storms, and rising oceans. This special issue brings together a collection of seven articles that describe the impacts of extreme climatic events on a diverse set of human biology and health outcomes. The first two articles cover extreme temperatures extending from extreme heat to cold and changes in winter weather and the respective implications for adverse health events, human environmental limits, well-being, and human adaptability. Next, two articles cover the effects of exposures to extreme storms through an examination of hurricanes and cyclones on stress and birth outcomes. The following two articles describe the effects of extreme flooding events on livelihoods, nutrition, water and food insecurity, diarrheal and respiratory health, and stress. The last article examines the effects of drought on diet and food insecurity. Following a brief review of each extreme climatic event and articles covered in this special issue, I discuss future research opportunities-highlighting domains of climate change and specific research questions that are ripe for biological anthropologists to investigate. I close with a description of interdisciplinary methods to assess climate exposures and human biology outcomes to aid the investigation of the defining question of our time - how climate change will affect human biology and health. Ultimately, climate change is a water, food, and health problem. Human biologists offer a unique perspective for a combination of theoretical, methodological, and applied reasons and thus are in a prime position to contribute to this critical research agenda.
Collapse
Affiliation(s)
- Asher Y. Rosinger
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, USA
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
6
|
Welzel J, Grüdl S, Banowski B, Stark H, Sättler A, Welss T. A novel cell line from human eccrine sweat gland duct cells for investigating sweating physiology. Int J Cosmet Sci 2022; 44:216-231. [PMID: 35262932 DOI: 10.1111/ics.12769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Human eccrine sweat glands represent vital components of the skin involved in regulating body temperature. Especially the eccrine duct, which opens directly into the skin surface and releases the aqueous sweat, constitutes the first contact point with topically applied substances. For scientific investigations and to understand the underlying sweating mechanism on a cellular level defined cellular material is beneficial. We, therefore, strived to generate a cell line derived from human eccrine sweat gland duct cells for identifying new mechanisms in sweating control, as such a standardize cell line is currently lacking. MATERIAL AND METHODS Isolated primary human eccrine sweat gland duct cells were transduced with simian virus 40 large T antigen (SV40T) by lentiviral transduction. Successfully SV40T-transduced clones were selected by single cell cloning with one clone, named 1D10, being particularly described in this work. RESULTS In performed cellular investigations, SV40T-transduced duct-derived cells exhibited an extended lifespan with stable population doubling times suggesting its immortality. Besides, 1D10 clonal cell culture demonstrated similarities with parental, primary duct cells regarding gene expression of selected sweat gland-related markers. When combined with primary coil cells in a hanging drop co-culture, those transduced duct-derived cells showed some duct cell-like features. Further, a certain degree of cellular communication and a specific reaction towards substance application was observed. CONCLUSION Generated and herein described cell line derived from isolated human eccrine sweat gland duct cells is, based on the presented scientific findings, considered as immortal. Besides, this cell line shows some similarity with primary duct cells, although alterations from native glands were detected, among which is loss of expression of CFTR. Provided some further investigations, presented SV40T-transduced duct-cell derived cell line seems a suited surrogate of primary eccrine duct cells.
Collapse
Affiliation(s)
| | | | | | - Holger Stark
- ²Department of Pharmacy, Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | | | | |
Collapse
|
7
|
Sempionatto JR, Moon JM, Wang J. Touch-Based Fingertip Blood-Free Reliable Glucose Monitoring: Personalized Data Processing for Predicting Blood Glucose Concentrations. ACS Sens 2021; 6:1875-1883. [PMID: 33872007 DOI: 10.1021/acssensors.1c00139] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes prevalence has been rising exponentially, increasing the need for reliable noninvasive approaches for glucose monitoring. Different biofluids have been explored recently for replacing current blood finger-stick glucose strips with noninvasive painless sensing devices. While sweat has received considerable attention, there are mixed reports on correlating the sweat results with blood glucose levels. Here, we demonstrate a new rapid and reliable approach that combines a simple touch-based fingertip sweat electrochemical sensor with a new algorithm that addresses for personal variations toward the accurate estimate of blood glucose concentrations. The new painless and simple glucose self-testing protocol leverages the fast sweat rate on the fingertip for rapid assays of natural perspiration, without any sweat stimulation, along with the personalized sweat-response-to-blood concentration translation. A reliable estimate of the blood glucose sensing concentrations can thus be realized through a simple one-time personal precalibration. Such system training leads to a substantially improved accuracy with a Pearson correlation coefficient higher than 0.95, along with an overall mean absolute relative difference of 7.79%, with 100% paired points residing in the A + B region of the Clarke error grid. The speed and simplicity of the touch-based blood-free fingertip sweat assay, and the elimination of periodic blood calibrations, should lead to frequent self-testing of glucose and enhanced patient compliance toward the improved management of diabetes.
Collapse
Affiliation(s)
- Juliane R. Sempionatto
- Department Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Jong-Min Moon
- Department Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Joseph Wang
- Department Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
8
|
Dormont L, Mulatier M, Carrasco D, Cohuet A. Mosquito Attractants. J Chem Ecol 2021; 47:351-393. [PMID: 33725235 DOI: 10.1007/s10886-021-01261-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 01/01/2023]
Abstract
Vector control and personal protection against anthropophilic mosquitoes mainly rely on the use of insecticides and repellents. The search for mosquito-attractive semiochemicals has been the subject of intense studies for decades, and new compounds or odor blends are regularly proposed as lures for odor-baited traps. We present a comprehensive and up-to-date review of all the studies that have evaluated the attractiveness of volatiles to mosquitoes, including individual chemical compounds, synthetic blends of compounds, or natural host or plant odors. A total of 388 studies were analysed, and our survey highlights the existence of 105 attractants (77 volatile compounds, 17 organism odors, and 11 synthetic blends) that have been proved effective in attracting one or several mosquito species. The exhaustive list of these attractants is presented in various tables, while the most common mosquito attractants - for which effective attractiveness has been demonstrated in numerous studies - are discussed throughout the text. The increasing knowledge on compounds attractive to mosquitoes may now serve as the basis for complementary vector control strategies, such as those involving lure-and-kill traps, or the development of mass trapping. This review also points out the necessity of further improving the search for new volatile attractants, such as new compound blends in specific ratios, considering that mosquito attraction to odors may vary over the life of the mosquito or among species. Finally, the use of mosquito attractants will undoubtedly have an increasingly important role to play in future integrated vector management programs.
Collapse
Affiliation(s)
- Laurent Dormont
- CEFE, Univ Paul Valéry Montpellier 3, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.
| | - Margaux Mulatier
- Institut Pasteur de Guadeloupe, Laboratoire d'étude sur le contrôle des vecteurs (LeCOV), Lieu-Dit Morne Jolivièrex, 97139, Les Abymes, Guadeloupe, France
| | - David Carrasco
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - Anna Cohuet
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
9
|
Welzel J, Grüdl S, Welss T, Claas M, Sättler A, Förster T, Banowski B. Quantitative ion determination in eccrine sweat gland cells correlates to sweat reduction of antiperspirant actives. Int J Cosmet Sci 2021; 43:181-190. [PMID: 33259130 DOI: 10.1111/ics.12679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/06/2020] [Accepted: 11/25/2020] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Axillary wetness represents an unwanted effect of the physiologically vital sweating mechanism, especially when it becomes excessive. Cosmetic products reducing sweat secretion rely on aluminium salts as the active ingredient acting by physically blocking the sweat gland. Driven by the interest to better understand the sweat mechanism and to develop alternative technologies against excessive sweating a search for an effective testing approach started as up to now, cost- and time-consuming in vivo studies represent the standard procedure for testing and identifying these alternatives. MATERIAL AND METHODS The herein described in vitro test system is based on the measurement of intracellular changes of the ion equilibrium in cultured eccrine sweat gland cells. Subsequently, in vivo studies on the back of volunteers were conducted to verify the sweat-reducing effect of in vitro newly discovered substance. RESULTS In this study, we describe an effective cell-based in vitro method as a potent tool for a more targeted screening of alternatives to aluminium salts. Testing the commonly used aluminium chlorohydrate as one example of an aluminium-based active in this screening procedure, we discovered a distinct influence on the ion equilibrium: Intracellular levels of sodium ions were decreased while those of chloride increased. Screening of various substances revealed a polyethyleneimine, adjusted to pH 3.5 with hydrochloric acid, to evoke the same alterations in the ion equilibrium as aluminium chlorohydrate. Subsequent in vivo studies showed its substantial antiperspirant action and confirmed the high efficiency of the polyethyleneimine solution in vivo. Further, specific investigations connecting the chloride content of the tested substances with the resulting sweat reduction pointed towards a substantial impact of the chloride ions on sweating. CONCLUSION The newly described in vitro cell-based screening method represents an effective means for identifying new antiperspirant actives and suggests an additional biological mechanism of action of sweat-reducing ingredients which is directed towards unbalancing of the ion equilibrium inside eccrine sweat gland cells.
Collapse
Affiliation(s)
- J Welzel
- Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - S Grüdl
- Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - T Welss
- Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - M Claas
- Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - A Sättler
- Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - T Förster
- Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - B Banowski
- Henkel AG & Co. KGaA, Düsseldorf, Germany
| |
Collapse
|
10
|
Williams ML. Global warming, heat-related illnesses, and the dermatologist. Int J Womens Dermatol 2020; 7:70-84. [PMID: 33537396 PMCID: PMC7838243 DOI: 10.1016/j.ijwd.2020.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022] Open
Abstract
Global warming, provoked by the greenhouse effect of high levels of atmospheric gases (most notably carbon dioxide and methane), directly threatens human health and survival. Individuals vary in their capacity to tolerate episodes of extreme heat. Because skin is the organ tasked with heat dissipation, it is important for dermatologists to be versed in the physiology of cutaneous heat dissipation and cognizant of clinical settings in which the skin’s thermoregulatory responses may be impaired. When the external temperature is lower than that of the skin, the skin releases internal heat through direct thermal exchange with the environment, a process that is aided by an expansion of cutaneous blood flow and eccrine sweating. Cooling through the evaporation of sweat is effective even when the external temperature exceeds that of skin. Many factors, including environmental and physiological (e.g., age and sex), and pathological (e.g., preexisting illnesses, disorders of eccrine function, and medications) considerations, affect the skin’s capacity to thermoregulate. Identification of individuals at increased risk for heat-related morbidity and mortality will become increasingly important in the care of patients.
Collapse
Affiliation(s)
- Mary L Williams
- Departments of Dermatology and Pediatrics, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
11
|
Zhang J, Luo RC, Man XY, Lv LB, Yao YG, Zheng M. The anatomy of the skin of the Chinese tree shrew is very similar to that of human skin. Zool Res 2020; 41:208-212. [PMID: 32135581 PMCID: PMC7109020 DOI: 10.24272/j.issn.2095-8137.2020.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Jing Zhang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Rong-Can Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Long-Bao Lv
- Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Min Zheng
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China. E-mail:
| |
Collapse
|
12
|
Bethancourt HJ, Swanson ZS, Nzunza R, Huanca T, Conde E, Kenney WL, Young SL, Ndiema E, Braun D, Pontzer H, Rosinger AY. Hydration in relation to water insecurity, heat index, and lactation status in two small-scale populations in hot-humid and hot-arid environments. Am J Hum Biol 2020; 33:e23447. [PMID: 32583580 DOI: 10.1002/ajhb.23447] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES This study compared the prevalence of concentrated urine (urine specific gravity ≥1.021), an indicator of hypohydration, across Tsimane' hunter-forager-horticulturalists living in hot-humid lowland Bolivia and Daasanach agropastoralists living in hot-arid Northern Kenya. It tested the hypotheses that household water and food insecurity would be associated with higher odds of hypohydration. METHODS This study collected spot urine samples and corresponding weather data along with data on household water and food insecurity, demographics, and health characteristics among 266 Tsimane' households (N = 224 men, 235 women, 219 children) and 136 Daasanach households (N = 107 men, 120 women, 102 children). RESULTS The prevalence of hypohydration among Tsimane' men (50.0%) and women (54.0%) was substantially higher (P < .001) than for Daasanach men (15.9%) and women (17.5%); the prevalence of hypohydration among Tsimane' (37.0%) and Daasanach (31.4%) children was not significantly different (P = .33). Multiple logistic regression models suggested positive but not statistically significant trends between household water insecurity and odds of hypohydration within populations, yet some significant joint effects of water and food insecurity were observed. Heat index (2°C) was associated with a 23% (95% confidence interval [CI]: 1.09-1.40, P = .001), 34% (95% CI: 1.18-1.53, P < .0005), and 23% (95% CI: 1.04-1.44, P = .01) higher odds of hypohydration among Tsimane' men, women, and children, respectively, and a 48% (95% CI: 1.02-2.15, P = .04) increase in the odds among Daasanach women. Lactation status was also associated with hypohydration among Tsimane' women (odds ratio = 3.35, 95% CI: 1.62-6.95, P = .001). CONCLUSION These results suggest that heat stress and reproductive status may have a greater impact on hydration status than water insecurity across diverse ecological contexts.
Collapse
Affiliation(s)
- Hilary J Bethancourt
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Zane S Swanson
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | | | - Tomas Huanca
- Centro Boliviano de Investigacion y Desarrollo Socio Integral (CBIDSI), San Borja, Bolivia
| | - Esther Conde
- Centro Boliviano de Investigacion y Desarrollo Socio Integral (CBIDSI), San Borja, Bolivia
| | - W Larry Kenney
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sera L Young
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Emmanuel Ndiema
- Department of Earth Sciences, National Museums of Kenya, Nairobi, Kenya
| | - David Braun
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA.,Department of Human Evolution, Max Planck Institute of Evolutionary Anthropology, Leipzig, Germany
| | - Herman Pontzer
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA.,Global Health Institute, Duke University, Durham, North Carolina, USA
| | - Asher Y Rosinger
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, USA.,Department of Anthropology, The Pennsylvania State University, Pennsylvania, USA
| |
Collapse
|