1
|
Antunes MA, Grandela A, Santos MA, Santos M, Matos M, Simões P. Body size decline during thermal evolution is only detected at mild temperature. Proc Biol Sci 2024; 291:20241498. [PMID: 39353551 PMCID: PMC11444762 DOI: 10.1098/rspb.2024.1498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024] Open
Abstract
Body size is a key morphological trait that affects physiology and metabolism, as well as other relevant traits such as fertility and mating success. Some evidence points to a trend of shrinking body size with increasing temperature, but this is far from unequivocal. Here, we assess the evolution of body size under a warming environment in experimentally evolved Drosophila subobscura populations from two distinct geographical origins, tested in both ancestral and warming environments. We observed a decrease in body size in the warming populations, but only in the lower-latitude populations and only when tested in the ancestral (control) environment. The absence of a body size response in the warming environment may be owing to a balance between forces promoting thermodynamic stability-leading to a tendency for body size to decrease-and selection for increased reproductive output-leading to an increase in body size. Our findings indicate that body size variation is complex, with genotype-by-environment interactions occurring. This may explain the lack of consistency across studies. This highlights that predictions of body size evolution under climate warming are not straightforward and emphasizes the need for considering intra- and inter-specific variation in future studies.
Collapse
Affiliation(s)
- Marta A. Antunes
- CE3C – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa1749-016 Lisboa, Portugal
| | - Afonso Grandela
- CE3C – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa1749-016 Lisboa, Portugal
| | - Marta A. Santos
- CE3C – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa1749-016 Lisboa, Portugal
| | - Mauro Santos
- CE3C – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability Institute, Lisboa, Portugal
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GBBE), Universitat Autònoma de Barcelona, Barcelona080193 Bellaterra, Spain
| | - Margarida Matos
- CE3C – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa1749-016 Lisboa, Portugal
| | - Pedro Simões
- CE3C – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa1749-016 Lisboa, Portugal
| |
Collapse
|
2
|
Dennington NL, Grossman MK, Ware-Gilmore F, Teeple JL, Johnson LR, Shocket MS, McGraw EA, Thomas MB. Phenotypic adaptation to temperature in the mosquito vector, Aedes aegypti. GLOBAL CHANGE BIOLOGY 2024; 30:e17041. [PMID: 38273521 DOI: 10.1111/gcb.17041] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 01/27/2024]
Abstract
Most models exploring the effects of climate change on mosquito-borne disease ignore thermal adaptation. However, if local adaptation leads to changes in mosquito thermal responses, "one size fits all" models could fail to capture current variation between populations and future adaptive responses to changes in temperature. Here, we assess phenotypic adaptation to temperature in Aedes aegypti, the primary vector of dengue, Zika, and chikungunya viruses. First, to explore whether there is any difference in existing thermal response of mosquitoes between populations, we used a thermal knockdown assay to examine five populations of Ae. aegypti collected from climatically diverse locations in Mexico, together with a long-standing laboratory strain. We identified significant phenotypic variation in thermal tolerance between populations. Next, to explore whether such variation can be generated by differences in temperature, we conducted an experimental passage study by establishing six replicate lines from a single field-derived population of Ae. aegypti from Mexico, maintaining half at 27°C and the other half at 31°C. After 10 generations, we found a significant difference in mosquito performance, with the lines maintained under elevated temperatures showing greater thermal tolerance. Moreover, these differences in thermal tolerance translated to shifts in the thermal performance curves for multiple life-history traits, leading to differences in overall fitness. Together, these novel findings provide compelling evidence that Ae. aegypti populations can and do differ in thermal response, suggesting that simplified thermal performance models might be insufficient for predicting the effects of climate on vector-borne disease transmission.
Collapse
Affiliation(s)
- Nina L Dennington
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Center for Infectious Disease Dynamics, The Huck Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Marissa K Grossman
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Fhallon Ware-Gilmore
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Center for Infectious Disease Dynamics, The Huck Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Janet L Teeple
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Leah R Johnson
- Department of Statistics, Virginia Tech, Blacksburg, Virginia, USA
| | - Marta S Shocket
- Department of Geography, University of Florida, Gainesville, Florida, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Elizabeth A McGraw
- The Center for Infectious Disease Dynamics, The Huck Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Matthew B Thomas
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
- Invasion Science Research Institute, University of Florida, Gainesville, Florida, USA
- Department of Biology, University of York, York, UK
| |
Collapse
|
3
|
Santos MA, Antunes MA, Grandela A, Carromeu-Santos A, Quina AS, Santos M, Matos M, Simões P. Heat-induced female biased sex ratio during development is not mitigated after prolonged thermal selection. BMC Ecol Evol 2023; 23:64. [PMID: 37919666 PMCID: PMC10623787 DOI: 10.1186/s12862-023-02172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND The negative impacts of climate change on biodiversity are consistently increasing. Developmental stages are particularly sensitive in many ectotherms. Moreover, sex-specific differences in how organisms cope with thermal stress can produce biased sex ratios upon emergence, with potentially major impacts on population persistence. This is an issue that needs investigation, particularly testing whether thermal selection can alleviate sex ratio distortions in the long-term is a critical but neglected issue. Here, we report an experiment analyzing the sex ratio patterns at different developmental temperatures in Drosophila subobscura populations subjected to long-term experimental evolution (~ 30 generations) under a warming environment. RESULTS We show that exposure to high developmental temperatures consistently promotes sex ratio imbalance upon emergence, with a higher number of female than male offspring. Furthermore, we found that thermal selection resulting from evolution in a warming environment did not alleviate such sex ratio distortions generated by heat stress. CONCLUSIONS We demonstrate that heat stress during development can lead to clear sex ratio deviations upon emergence likely because of differential survival between sexes. In face of these findings, it is likely that sex ratio deviations of this sort occur in natural populations when facing environmental perturbation. The inability of many insects to avoid thermal shifts during their (more) sessile developmental stages makes this finding particularly troublesome for population subsistence in face of climate warming events.
Collapse
Affiliation(s)
- Marta A Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Marta A Antunes
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Afonso Grandela
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Carromeu-Santos
- CESAM - Centre for Environmental and Marine Studies, Universidade de Aveiro and Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana S Quina
- CESAM - Centre for Environmental and Marine Studies, Universidade de Aveiro and Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mauro Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GBBE), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Margarida Matos
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Simões
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal.
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
4
|
Santos MA, Antunes MA, Grandela A, Quina AS, Santos M, Matos M, Simões P. Slow and population specific evolutionary response to a warming environment. Sci Rep 2023; 13:9700. [PMID: 37322066 PMCID: PMC10272154 DOI: 10.1038/s41598-023-36273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Adaptation to increasingly warmer environments may be critical to avoid extinction. Whether and how these adaptive responses can arise is under debate. Though several studies have tackled evolutionary responses under different thermal selective regimes, very few have specifically addressed the underlying patterns of thermal adaptation under scenarios of progressive warming conditions. Also, considering how much past history affects such evolutionary response is critical. Here, we report a long-term experimental evolution study addressing the adaptive response of Drosophila subobscura populations with distinct biogeographical history to two thermal regimes. Our results showed clear differences between the historically differentiated populations, with adaptation to the warming conditions only evident in the low latitude populations. Furthermore, this adaptation was only detected after more than 30 generations of thermal evolution. Our findings show some evolutionary potential of Drosophila populations to respond to a warming environment, but the response was slow and population specific, emphasizing limitations to the ability of ectotherms to adapt to rapid thermal shifts.
Collapse
Affiliation(s)
- Marta A Santos
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Lisbon, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Marta A Antunes
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Lisbon, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Afonso Grandela
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Lisbon, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana S Quina
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- CESAM-Centre for Environmental and Marine Studies, Universidade de Aveiro, Aveiro, Portugal
| | - Mauro Santos
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GBBE), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Margarida Matos
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Lisbon, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Simões
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Lisbon, Portugal.
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
5
|
Macchiano A, Miller E, Agali U, Ola-Ajose A, Fowler-Finn KD. Developmental temperature alters the thermal sensitivity of courtship activity and signal-preference relationships, but not mating rates. Oecologia 2023; 202:97-111. [PMID: 37166505 DOI: 10.1007/s00442-023-05376-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
Mating behaviors are sensitive to novel or stressful thermal conditions, particularly for ectothermic organisms. An organism's sensitivity to temperature, which may manifest in altered mating outcomes, can be shaped in part by temperatures experienced during development. Here, we tested how developmental temperature shapes the expression of adult mating-related behaviors across different ambient conditions, with a focus on courtship behavior, mating rates, and mating signals and preferences. To do so, we reared treehoppers under two temperature regimes and then tested the expression of male and female mating behaviors across a range of ambient temperatures. We found that developmental temperature affects the thermal sensitivity of courtship behavior and mating signals for males. However, developmental temperature did not affect the thermal sensitivity of courtship or mate preferences in females. This sex-specific plasticity did not alter the likelihood of mating across ambient temperatures, but it did disrupt how closely mating signals and preferences matched each other at higher ambient temperatures. As a result, developmental temperature could alter sexual selection through signal-preference de-coupling. We further discuss how adult age may drive sex-specific results, and the potential for mismatches between developmental and mating thermal environments under future climate change predictions.
Collapse
Affiliation(s)
- Anthony Macchiano
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO, 63103, USA.
| | - Em Miller
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO, 63103, USA
| | | | | | - Kasey D Fowler-Finn
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO, 63103, USA
| |
Collapse
|
6
|
Santos MA, Antunes MA, Grandela A, Carromeu-Santos A, Quina AS, Santos M, Matos M, Simões P. Past history shapes evolution of reproductive success in a global warming scenario. J Therm Biol 2023; 112:103478. [PMID: 36796921 DOI: 10.1016/j.jtherbio.2023.103478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/10/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Adaptive evolution is critical for animal populations to thrive in the fast-changing natural environments. Ectotherms are particularly vulnerable to global warming and, although their limited coping ability has been suggested, few real-time evolution experiments have directly accessed their evolutionary potential. Here, we report a long-term experimental evolution study addressing the evolution of Drosophila thermal reaction norms, after ∼30 generations under different dynamic thermal regimes: fluctuating (daily variation between 15 and 21 °C) or warming (daily fluctuation with increases in both thermal mean and variance across generations). We analyzed the evolutionary dynamics of Drosophila subobscura populations as a function of the thermally variable environments in which they evolved and their distinct background. Our results showed clear differences between the historically differentiated populations: high latitude D. subobscura populations responded to selection, improving their reproductive success at higher temperatures whereas their low latitude counterparts did not. This suggests population variation in the amount of genetic variation available for thermal adaptation, an aspect that needs to be considered to allow for better predictions of future climate change responses. Our results highlight the complex nature of thermal responses in face of environmental heterogeneity and emphasize the importance of considering inter-population variation in thermal evolution studies.
Collapse
Affiliation(s)
- Marta A Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Marta A Antunes
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Afonso Grandela
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Carromeu-Santos
- CESAM - Centre for Environmental and Marine Studies, Universidade de Aveiro and Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana S Quina
- CESAM - Centre for Environmental and Marine Studies, Universidade de Aveiro and Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mauro Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal; Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GBBE), Universitat Autònoma de Barcelona, Spain
| | - Margarida Matos
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Simões
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
7
|
Santos MA, Carromeu-Santos A, Quina AS, Santos M, Matos M, Simões P. No evidence for short-term evolutionary response to a warming environment in Drosophila. Evolution 2021; 75:2816-2829. [PMID: 34617283 DOI: 10.1111/evo.14366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/28/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
Adaptive evolution is key in mediating responses to global warming and may sometimes be the only solution for species to survive. Such evolution will expectedly lead to changes in the populations' thermal reaction norm and improve their ability to cope with stressful conditions. Conversely, evolutionary constraints might limit the adaptive response. Here, we test these expectations by performing a real-time evolution experiment in historically differentiated Drosophila subobscura populations. We address the phenotypic change after nine generations of evolution in a daily fluctuating environment with average constant temperature, or in a warming environment with increasing average and amplitude temperature across generations. Our results showed that (1) evolution under a global warming scenario does not lead to a noticeable change in the thermal response; (2) historical background appears to be affecting responses under the warming environment, particularly at higher temperatures; and (3) thermal reaction norms are trait dependent: although lifelong exposure to low temperature decreases fecundity and productivity but not viability, high temperature causes negative transgenerational effects on productivity and viability, even with high fecundity. These findings in such an emblematic organism for thermal adaptation studies raise concerns about the short-term efficiency of adaptive responses to the current rising temperatures.
Collapse
Affiliation(s)
- Marta A Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016.,Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016
| | - Ana Carromeu-Santos
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016.,CESAM, Centre for Environmental and Marine Studies, Universidade de Aveiro, Aveiro, Portugal, 3810-193
| | - Ana S Quina
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016.,CESAM, Centre for Environmental and Marine Studies, Universidade de Aveiro, Aveiro, Portugal, 3810-193
| | - Mauro Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016.,Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GBBE), Universitat Autònoma de Barcelona, Bellaterra, Spain, 08193
| | - Margarida Matos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016.,Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016
| | - Pedro Simões
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016.,Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016
| |
Collapse
|
8
|
Santos MA, Carromeu-Santos A, Quina AS, Santos M, Matos M, Simões P. High developmental temperature leads to low reproduction despite adult temperature. J Therm Biol 2020; 95:102794. [PMID: 33454035 DOI: 10.1016/j.jtherbio.2020.102794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/25/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
Phenotypic plasticity can help organisms cope with changing thermal conditions and it may depend on which life-stage the thermal stress is imposed: for instance, exposure to stressful temperatures during development can trigger a positive plastic response in adults. Here, we analyze the thermal plastic response of laboratory populations of Drosophila subobscura, derived from two contrasting latitudes of the European cline. We measured reproductive performance through fecundity characters, after the experimental populations were exposed to five thermal treatments, with different combinations of developmental and adult temperatures (14 °C, 18 °C, or 26 °C). Our questions were whether (1) adult performance changes with exposure to higher (or lower) temperatures during development; (2) flies raised at lower temperatures outperform those developed at higher ones, supporting the "colder is better" hypothesis; (3) there is a cumulative effect on adult performance of exposing both juveniles and adults to higher (or lower) temperatures; (4) there is evidence for biogeographical effects on adult performance. Our main findings were that (1) higher developmental temperatures led to low reproductive performance regardless of adult temperature, while at lower temperatures reduced performance only occurred when colder conditions were persistent across juvenile and adult stages; (2) flies raised at lower temperatures did not always outperform those developed at other temperatures; (3) there were no harmful cumulative effects after exposing both juveniles and adults to higher temperatures; (4) both latitudinal populations showed similar thermal plasticity patterns. The negative effect of high developmental temperature on reproductive performance, regardless of adult temperature, highlights the developmental stage as very critical and most vulnerable to climate change and associated heat waves.
Collapse
Affiliation(s)
- Marta A Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Carromeu-Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana S Quina
- CESAM, Centre for Environmental and Marine Studies, Universidade de Aveiro and Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Mauro Santos
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Universitat Autonòma de Barcelona, Spain
| | - Margarida Matos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Simões
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
9
|
Sørensen JG, Manenti T, Bechsgaard JS, Schou MF, Kristensen TN, Loeschcke V. Pronounced Plastic and Evolutionary Responses to Unpredictable Thermal Fluctuations in Drosophila simulans. Front Genet 2020; 11:555843. [PMID: 33193631 PMCID: PMC7655653 DOI: 10.3389/fgene.2020.555843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022] Open
Abstract
Organisms are exposed to temperatures that vary, for example on diurnal and seasonal time scales. Thus, the ability to behaviorally and/or physiologically respond to variation in temperatures is a fundamental requirement for long-term persistence. Studies on thermal biology in ectotherms are typically performed under constant laboratory conditions, which differ markedly from the variation in temperature across time and space in nature. Here, we investigate evolutionary adaptation and environmentally induced plastic responses of Drosophila simulans to no fluctuations (constant), predictable fluctuations or unpredictable fluctuations in temperature. We whole-genome sequenced populations exposed to 20 generations of experimental evolution under the three thermal regimes and examined the proteome after short-term exposure to the same three regimes. We find that unpredictable fluctuations cause the strongest response at both genome and proteome levels. The loci showing evolutionary responses were generally unique to each thermal regime, but a minor overlap suggests either common laboratory adaptation or that some loci were involved in the adaptation to multiple thermal regimes. The evolutionary response, i.e., loci under selection, did not coincide with induced responses of the proteome. Thus, genes under selection in fluctuating thermal environments are distinct from genes important for the adaptive plastic response observed within a generation. This information is key to obtain a better understanding and prediction of the effects of future increases in both mean and variability of temperatures.
Collapse
Affiliation(s)
| | | | | | - Mads F. Schou
- Department of Biology, Lund University, Lund, Sweden
| | | | | |
Collapse
|