1
|
Abbas IA, El-Bary AA, Mohamed AOY. Generalized thermomechanical interaction in two-dimensional skin tissue using eigenvalues approach. J Therm Biol 2024; 119:103777. [PMID: 38150888 DOI: 10.1016/j.jtherbio.2023.103777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023]
Abstract
The aim of this work is to analytically study the thermo-mechanical response of two-dimensional skin tissues when subjected to instantaneous heating. A complete understanding of the heat transfer process and the associated thermal and mechanical effects on the patient's skin tissues is critical to ensuring the effective applications of thermal therapy techniques and procedures. The surface boundary of the half-space undergoes a heat flux characterized by an exponentially decaying pulse, while maintaining a condition of zero traction. The utilization of Laplace and Fourier transformations is employed, and the resulting formulations are then applied to human tissues undergoing regional hyperthermia treatment for cancer therapy. To perform the inversion process for Laplace and Fourier transforms, a numerical programming method based on Stehfest numerical inverse method is employed. The findings demonstrate that blood perfusion rate and thermal relaxation time significantly influence all the analyzed distributions. Numerical findings suggest that thermo-mechanical waves propagate through skin tissue over finite distances, which helps mitigate the unrealistic predictions made by the Pennes' model.
Collapse
Affiliation(s)
- Ibrahim A Abbas
- Department of Mathematics, Faculty of Science, Sohag University, Sohag, Egypt.
| | - Alaa A El-Bary
- Basic and Applied Science Institute, Arab Academy for Science, Technology and Maritime Transport, P.O. Box 1029, Alexandria, Egypt.
| | - Adil O Y Mohamed
- Department of Computer Science, College of Computer, Qassim University, Buraydah, 52571, Saudi Arabia.
| |
Collapse
|
2
|
Wang Y, Wang Z, Zheng W, Lu X. Coupled thermo-mechanical interaction on a multi-layered skin tissue with temperature-dependent physical properties irradiated by a pulse laser. J Therm Biol 2024; 119:103800. [PMID: 38295752 DOI: 10.1016/j.jtherbio.2024.103800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024]
Abstract
A detailed understanding of the coupled thermo-mechanical interaction on the biological tissue irradiated by a pulse laser is essential for the existed therapeutic methods constructed on the photo-thermal effect, which will contribute to the design, characterization and optimization of strategies for delivering better treatment. The aim of present work is to explore the coupled thermo-mechanical behavior of a multi-layered skin tissue with temperature-dependent physical properties under the pulsed laser irradiation. A layered theoretical model involved variable physical parameters with temperature has been proposed firstly according to the generalized theory of thermo-elasticity with dual-phase lag mechanism. The numerical method based on an explicit finite difference scheme is then employed to predict the temporal and spatial distributions of the temperature, thermal deformation and stresses experienced to a short-pulse laser irradiation. On this basis, the effect of variable thermal and mechanical physical parameters of skin tissue on the coupled thermo-mechanical behavior and relative thermal damage has been evaluated.
Collapse
Affiliation(s)
- Yingze Wang
- Department of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Zhe Wang
- Department of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Wenbo Zheng
- Department of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xiaoyu Lu
- Department of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| |
Collapse
|
3
|
Hobiny A, Abbas I. Influence of thermal relaxation time on thermomechanical interactions in biological tissue during hyperthermia treatment. J Therm Biol 2023; 118:103723. [PMID: 37852137 DOI: 10.1016/j.jtherbio.2023.103723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/20/2023]
Abstract
This study presents an analytical analysis of thermo-mechanical interactions within living tissues using a generalized biothermoelastic model with one thermal relaxation time. Utilizing Laplace transforms and associated techniques, we investigate the response of living tissue to a pulse boundary heat flux that decays exponentially on a traction-free surface. Through detailed graphical illustrations, we elucidate the influence of key parameters such as thermal relaxation time, blood perfusion rate, and the characteristic time of the pulsing heat flux on temperature distribution, displacement, and thermal strain. Our results are presented through comprehensive graphical representations. Furthermore, a parametric analysis is conducted to guide the selection of optimal design factors, enhancing the accuracy of hyperthermia treatments.
Collapse
Affiliation(s)
- A Hobiny
- Department of Mathematics, Faculty of Science, King Abdulaziz University, Saudi Arabia.
| | - I Abbas
- Department of Mathematics, Faculty of Science, King Abdulaziz University, Saudi Arabia; Department of Mathematics, Faculty of Science, Sohag University, Sohag, Egypt.
| |
Collapse
|
4
|
Bianchi L, Fiorentini S, Gianella S, Gianotti S, Iadanza C, Asadi S, Saccomandi P. Measurement of Thermal Conductivity and Thermal Diffusivity of Porcine and Bovine Kidney Tissues at Supraphysiological Temperatures up to 93 °C. SENSORS (BASEL, SWITZERLAND) 2023; 23:6865. [PMID: 37571648 PMCID: PMC10422510 DOI: 10.3390/s23156865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
This experimental study aimed to characterize the thermal properties of ex vivo porcine and bovine kidney tissues in steady-state heat transfer conditions in a wider thermal interval (23.2-92.8 °C) compared to previous investigations limited to 45 °C. Thermal properties, namely thermal conductivity (k) and thermal diffusivity (α), were measured in a temperature-controlled environment using a dual-needle probe connected to a commercial thermal property analyzer, using the transient hot-wire technique. The estimation of measurement uncertainty was performed along with the assessment of regression models describing the trend of measured quantities as a function of temperature to be used in simulations involving heat transfer in kidney tissue. A direct comparison of the thermal properties of the same tissue from two different species, i.e., porcine and bovine kidney tissues, with the same experimental transient hot-wire technique, was conducted to provide indications on the possible inter-species variabilities of k and α at different selected temperatures. Exponential fitting curves were selected to interpolate the measured values for both porcine and bovine kidney tissues, for both k and α. The results show that the k and α values of the tissues remained rather constant from room temperature up to the onset of water evaporation, and a more marked increase was observed afterward. Indeed, at the highest investigated temperatures, i.e., 90.0-92.8 °C, the average k values were subject to 1.2- and 1.3-fold increases, compared to their nominal values at room temperature, in porcine and bovine kidney tissue, respectively. Moreover, at 90.0-92.8 °C, 1.4- and 1.2-fold increases in the average values of α, compared to baseline values, were observed for porcine and bovine kidney tissue, respectively. No statistically significant differences were found between the thermal properties of porcine and bovine kidney tissues at the same selected tissue temperatures despite their anatomical and structural differences. The provided quantitative values and best-fit regression models can be used to enhance the accuracy of the prediction capability of numerical models of thermal therapies. Furthermore, this study may provide insights into the refinement of protocols for the realization of tissue-mimicking phantoms and the choice of tissue models for bioheat transfer studies in experimental laboratories.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy; (L.B.); (S.F.); (S.G.); (S.G.); (C.I.); (S.A.)
| |
Collapse
|
5
|
Louis H, Mbim EN, Okon GA, Edet UO, Benjamin I, Ejiofor EU, Manicum ALE. Systematic exo-endo encapsulation of hydroxyurea (HU) by Cu, Ag, and Au-doped gallium nitride nanotubes (GaNNT) for smart therapeutic delivery. Comput Biol Med 2023; 161:106934. [PMID: 37257404 DOI: 10.1016/j.compbiomed.2023.106934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 06/02/2023]
Abstract
Similar to the more well-known carbon nanotubes, gallium nitride nanotubes (GaNNT) are among the materials that scientists have found to be extremely helpful in transporting drugs and to provide significant potential for multi-modal medical therapies. Here, the potential of Cu, Ag, and Au-doped GaNNT for smart delivery of the anticancer medication hydroxyurea (HU) was extensively investigated employing quantum chemical analysis and density functional theory (DFT) computation at the B3LYP-GD3BJ/def2-SVP level of theory. The systematic approach used in this study entails examining the exo (outside)-and endo (inside) loading of HU utilizing the investigated nanotubes in order to understand the adsorption, sensing processes, bonding types, and thermodynamic properties. Results of the HOMO-LUMO studies show that metal-doped GaNNTs with the hydroxyurea (HU) at the endo - interaction of the drug of the nanotube produced more reduced energy gaps (0.911-2.039 eV) compared with metal-doped GaNNTs complexes at the outside - interaction of the drug on the nanotube (2.25-3.22 eV) and as such reveal their suitability for use as drug delivery materials. As observed in the endo-interaction of HU adsorptions in the tubes, HU_endo_Au@GaNNT possessed the highest adsorption energy values of -118.716 kcal/mol which shows the most chemisorption between the surfaces and the adsorbate while for HU_exo_Ag@GaNNT is -97.431 kcal/mol for the highest exo-interactions. These results suggest that HU drug interacted inside the Ag, Au, and Cu doped GaNNT will be very proficient as a carrier of the HU drug into bio systems. These results are along with visual studies of weak interactions, thermodynamics, sensor, and drug release mechanisms suggest strongly the endo-encapsulation of HU as the best mode for smart drug delivery.
Collapse
Affiliation(s)
- Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria; Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria.
| | - Elizabeth N Mbim
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria; Department of Public Health, Arthur Jarvis University, Akpabuyo, Nigeria
| | - Gideon A Okon
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria; Department of Chemical Sciences, Clifford University, Owerrinta, Nigeria
| | - Uwem O Edet
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria; Department of Microbiology, Arthur Jarvis University, Akpabuyo, Nigeria
| | - Innocent Benjamin
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria; Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Nigeria.
| | - Emmanuel U Ejiofor
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria; Department of Chemical Sciences, Clifford University, Owerrinta, Nigeria
| | - Amanda-Lee E Manicum
- Department of Chemistry, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
6
|
Kurbanova B, Ashikbayeva Z, Amantayeva A, Sametova A, Blanc W, Gaipov A, Tosi D, Utegulov Z. Thermo-Visco-Elastometry of RF-Wave-Heated and Ablated Flesh Tissues Containing Au Nanoparticles. BIOSENSORS 2022; 13:bios13010008. [PMID: 36671844 PMCID: PMC9855978 DOI: 10.3390/bios13010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 05/27/2023]
Abstract
We report non-contact laser-based Brillouin light-scattering (BLS) spectroscopy measurements of the viscoelastic properties of hyperthermally radiofrequency (RF)-heated and ablated bovine liver and chicken flesh tissues with embedded gold nanoparticles (AuNPs). The spatial lateral profile of the local surface temperature in the flesh samples during their hyperthermia was measured through optical backscattering reflectometry (OBR) using Mg−silica-NP-doped sensing fibers distributed with an RF applicator and correlated with viscoelastic variations in heat-affected and ablated tissues. Substantial changes in the tissue stiffness after heating and ablation were directly related to their heat-induced structural modifications. The main proteins responsible for muscle elasticity were denatured and irreversibly aggregated during the RF ablation. At T > 100 °C, the proteins constituting the flesh further shrank and became disorganized, leading to substantial plastic deformation of biotissues. Their uniform destruction with larger thermal lesions and a more viscoelastic network was attained via AuNP-mediated RF hyperthermal ablation. The results demonstrated here pave the way for simultaneous real-time hybrid optical sensing of viscoelasticity and local temperature in biotissues during their denaturation and gelation during hyperthermia for future applications that involve mechanical- and thermal-property-controlled theranostics.
Collapse
Affiliation(s)
- Bayan Kurbanova
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Zhannat Ashikbayeva
- School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Aida Amantayeva
- School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Akbota Sametova
- School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Wilfried Blanc
- Université Côte d’Azur, INPHYNI, CNRS UMR7010, Avenue Joseph Vallot, 06108 Nice, France
| | - Abduzhappar Gaipov
- Department of Medicine, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
- National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, Astana 010000, Kazakhstan
| | - Zhandos Utegulov
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|