1
|
Wang Z, Robbins B, Zhuang R, Sandini T, van Bruggen R, Li XM, Zhang Y. Early psilocybin intervention alleviates behavioral despair and cognitive impairment in stressed Wistar rats. Prog Neuropsychopharmacol Biol Psychiatry 2025:111243. [PMID: 39756636 DOI: 10.1016/j.pnpbp.2024.111243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/02/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Chronic stress exerts profound effects on mental health, contributing to disorders such as depression, anxiety, and cognitive impairment. This study examines the potential of psilocybin to alleviate behavioral despair and cognitive deficits in a rodent model of chronic stress, focusing on the interplay between the Hypothalamic-Pituitary-Adrenal (HPA) axis and the Endocannabinoid System (ECS). Twenty-two male Wistar rats were divided into control and stress groups. Animals within the stress group were exposed to predator odor and chronic social instability to induce chronic stress, and were either sham treated, or given psilocybin. Behavioral assessments were conducted using the Open Field Test, Sucrose Preference Test, Novel Object Recognition, Elevated Plus Maze, and Forced Swimming Test to evaluate locomotion, anhedonia, memory, anxiety, and behavioral despair, respectively. Blood and brain samples were analyzed for biochemical markers. Results indicated that psilocybin significantly reduced stress-induced behavioral despair and cognitive impairments, likely through ECS-mediated downregulation of the HPA axis. These findings suggest that early intervention with psilocybin has sustained beneficial effects on stress-related behavioral and cognitive disturbances, underscoring its potential as a novel therapeutic approach for stress-related mental health disorders.
Collapse
Affiliation(s)
- Zitong Wang
- Department of Psychiatry, Faculty of Medicine and Dentistry, College of Health Science, University of Alberta, Edmonton, AB, Canada
| | - Brett Robbins
- Department of Psychiatry, Faculty of Medicine and Dentistry, College of Health Science, University of Alberta, Edmonton, AB, Canada
| | - Ryan Zhuang
- Western Canada High School, Calgary, AB, Canada
| | - Thaisa Sandini
- Department of Psychiatry, Faculty of Medicine and Dentistry, College of Health Science, University of Alberta, Edmonton, AB, Canada
| | - Rebekah van Bruggen
- Department of Cell Biology, Faculty of Medicine and Dentistry, College of Health Science, University of Alberta, Edmonton, AB, Canada
| | - Xin-Min Li
- Department of Psychiatry, Faculty of Medicine and Dentistry, College of Health Science, University of Alberta, Edmonton, AB, Canada.
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine and Dentistry, College of Health Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Becker HC, Lopez MF, King CE, Griffin WC. Oxytocin Reduces Sensitized Stress-Induced Alcohol Relapse in a Model of Posttraumatic Stress Disorder and Alcohol Use Disorder Comorbidity. Biol Psychiatry 2023; 94:215-225. [PMID: 36822933 PMCID: PMC10247903 DOI: 10.1016/j.biopsych.2022.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND There is high comorbidity of posttraumatic stress disorder (PTSD) and alcohol use disorder with few effective treatment options. Animal models of PTSD have shown increases in alcohol drinking, but effects of stress history on subsequent vulnerability to alcohol relapse have not been examined. Here we present a mouse model of PTSD involving chronic multimodal stress exposure that resulted in long-lasting sensitization to stress-induced alcohol relapse, and this sensitized stress response was blocked by oxytocin (OT) administration. METHODS Male and female mice trained to self-administer alcohol were exposed to predator odor (TMT) + yohimbine over 5 consecutive days or left undisturbed. After reestablishing stable alcohol responding/intake, mice were tested under extinction conditions, and then all mice were exposed to TMT or context cues previously associated with TMT before a reinstatement test session. Separate studies examined messenger RNA expression of Oxt and Oxtr in hypothalamus following chronic stress exposure. A final study examined the effects of systemic administration of OT on stress-induced alcohol relapse in mice with and without a history of chronic stress experience. RESULTS Chronic stress exposure produced long-lasting sensitization to subsequent stress-induced alcohol relapse that also generalized to stress-related context cues and transcriptional changes in hypothalamic OT system. OT injected before the reinstatement test session completely blocked the sensitized stress-induced alcohol relapse effect. CONCLUSIONS Collectively, these results provide support for the therapeutic potential of OT, along with highlighting the value of utilizing this model in evaluating other pharmacological interventions for treatment of PTSD/alcohol use disorder comorbidity.
Collapse
Affiliation(s)
- Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina; Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina; Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, South Carolina.
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Courtney E King
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - William C Griffin
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
3
|
Zhao J, Song Q, Wu Y, Yang L. Advances in neural circuits of innate fear defense behavior. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:653-661. [PMID: 37899403 PMCID: PMC10630063 DOI: 10.3724/zdxbyxb-2023-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
Fear, a negative emotion triggered by dangerous stimuli, can lead to psychiatric disorders such as phobias, anxiety disorders, and depression. Investigating the neural circuitry underlying congenital fear can offer insights into the pathophysiological mechanisms of related psychiatric conditions. Research on innate fear primarily centers on the response mechanisms to various sensory signals, including olfactory, visual and auditory stimuli. Different types of fear signal inputs are regulated by distinct neural circuits. The neural circuits of the main and accessory olfactory systems receive and process olfactory stimuli, mediating defensive responses like freezing. Escape behaviors elicited by visual stimuli are primarily regulated through the superior colliculus and hypothalamic projection circuits. Auditory stimuli-induced responses, including escape, are mainly mediated through auditory cortex projection circuits. In this article, we review the research progress on neural circuits of innate fear defensive behaviors in animals. We further discuss the different sensory systems, especially the projection circuits of olfactory, visual and auditory systems, to provide references for the mechanistic study of related mental disorders.
Collapse
Affiliation(s)
- Jiajia Zhao
- Henan University of Chinese Medicine School of Medicine, Zhengzhou 450046, China.
| | - Qi Song
- Henan University of Chinese Medicine School of Medicine, Zhengzhou 450046, China
| | - Yongye Wu
- Henan University of Chinese Medicine School of Medicine, Zhengzhou 450046, China
| | - Liping Yang
- Henan University of Chinese Medicine School of Medicine, Zhengzhou 450046, China.
| |
Collapse
|
4
|
Zhao J, Liu C, Zhang F, Zheng Z, Luo F, Xia J, Wang Y, Zhang Z, Tang J, Song Z, Li S, Xu K, Chen M, Jiang C, He C, Tang L, Hu Z, Gao D, Ren S. A paraventricular thalamus to central amygdala neural circuit modulates acute stress-induced heightened wakefulness. Cell Rep 2022; 41:111824. [PMID: 36516774 DOI: 10.1016/j.celrep.2022.111824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/24/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Heightened wakefulness in response to stressors is essential for survival but can also lead to sleep disorders like insomnia. The paraventricular thalamus (PVT) is both a critical thalamic area for wakefulness and a stress-sensitive brain region. However, whether the PVT and its neural circuitries are involved in controlling wakefulness in stress conditions remains unknown. Here, we find that PVT neurons projecting to the central amygdala (CeA) are activated by different stressors. These neurons are wakefulness-active and increase their activities upon sleep to wakefulness transitions. Optogenetic activation of the PVT-CeA circuit evokes transitions from sleep to wakefulness, whereas selectively silencing the activity of this circuit decreases time spent in wakefulness. Specifically, chemogenetic inhibition of CeA-projecting PVT neurons not only alleviates stress responses but also attenuates the acute stress-induced increase of wakefulness. Thus, our results demonstrate that the PVT-CeA circuit controls physiological wakefulness and modulates acute stress-induced heightened wakefulness.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Department of Sleep and Psychology, Daping Hospital, Army Medical University, Chongqing 400042, China; Department of Neurology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Chengyu Liu
- Department of Sleep and Psychology, Daping Hospital, Army Medical University, Chongqing 400042, China; Department of Neurology, The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing 400050, China
| | - Fenyan Zhang
- Department of Neurology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Ziyi Zheng
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Fenlan Luo
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Jianxia Xia
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yaling Wang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Zehui Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jinxiang Tang
- Sleep and Psychology Center, Bishan Hospital of Chongqing Medical University, Chongqing 402760, China
| | - Zhenbo Song
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Siyu Li
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Kan Xu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Mengting Chen
- Department of Sleep and Psychology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Chenggang Jiang
- Psychology Department, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing 401147, China
| | - Chao He
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Ling Tang
- Department of Neurology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China.
| | - Zhian Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| | - Dong Gao
- Department of Sleep and Psychology, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Shuancheng Ren
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Army 953 Hospital, Army Medical University, Shigatse 857000, China.
| |
Collapse
|
5
|
Ivanova D, Li XF, McIntyre C, Liu Y, Kong L, O’Byrne KT. Urocortin3 in the Posterodorsal Medial Amygdala Mediates Stress-induced Suppression of LH Pulsatility in Female Mice. Endocrinology 2021; 162:6383454. [PMID: 34618891 PMCID: PMC8547342 DOI: 10.1210/endocr/bqab206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 01/09/2023]
Abstract
Psychosocial stress disrupts reproduction and interferes with pulsatile LH secretion. The posterodorsal medial amygdala (MePD) is an upstream modulator of the reproductive axis and stress. Corticotropin-releasing factor type 2 receptors (CRFR2s) are activated in the presence of psychosocial stress together with increased expression of the CRFR2 ligand Urocortin3 (Ucn3) in the MePD of rodents. We investigate whether Ucn3 signalling in the MePD is involved in mediating the suppressive effect of psychosocial stress on LH pulsatility. First, we administered Ucn3 into the MePD and monitored the effect on LH pulses in ovariectomized mice. Next, we delivered Astressin2B, a selective CRFR2 antagonist, intra-MePD in the presence of predator odor, 2,4,5-trimethylthiazole (TMT) and examined the effect on LH pulses. Subsequently, we virally infected Ucn3-cre-tdTomato mice with inhibitory designer receptor exclusively activated by designer drugs (DREADDs) targeting MePD Ucn3 neurons while exposing mice to TMT or restraint stress and examined the effect on LH pulsatility as well as corticosterone release. Administration of Ucn3 into the MePD dose-dependently inhibited LH pulses and administration of Astressin2B blocked the suppressive effect of TMT on LH pulsatility. Additionally, DREADDs inhibition of MePD Ucn3 neurons blocked TMT and restraint stress-induced inhibition of LH pulses and corticosterone release. These results demonstrate for the first time that Ucn3 neurons in the MePD mediate psychosocial stress-induced suppression of the GnRH pulse generator and corticosterone secretion. Ucn3 signalling in the MePD plays a role in modulating the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-adrenal axes, and this brain locus may represent a nodal center in the interaction between the reproductive and stress axes.
Collapse
Affiliation(s)
- Deyana Ivanova
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College, London SE1 1UL, UK
- Correspondence: Deyana Ivanova, PhD, Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, 2.92W Hodgkin Building, Guy’s Campus, London SE1 1UL, UK.
| | - Xiao-Feng Li
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College, London SE1 1UL, UK
| | - Caitlin McIntyre
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College, London SE1 1UL, UK
| | - Yali Liu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Lingsi Kong
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College, London SE1 1UL, UK
| | - Kevin T O’Byrne
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College, London SE1 1UL, UK
- Correspondence: Kevin T. O’Byrne, Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, 2.92W Hodgkin Building, Guy’s Campus, London SE1 1UL, UK.
| |
Collapse
|