1
|
Ebrahimi M, Dattena M, Mara L, Pasciu V, Sotgiu FD, Chessa F, Luciano AM, Berlinguer F. In vitro production of meiotically competent oocytes from early antral follicles in sheep. Theriogenology 2024; 226:253-262. [PMID: 38950486 DOI: 10.1016/j.theriogenology.2024.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
The potential of using long in vitro culture (LIVC) of cumulus-oocyte complexes (COCs) from early antral follicles (EAFs) as an assisted reproductive technology in cattle has shown promising results. This study explored the feasibility of applying this technology to sheep as seasonal breeding animals. Ovaries from sheep were collected during both the breeding and non-breeding seasons. COCs were isolated from EAFs (350-450 μm) and cultured in TCM199 medium supplemented with 0.15 μg/mL Zn sulfate, 10-4IU/mL FSH, 10 ng/mL estradiol, 50 ng/mL testosterone, 50 ng/mL progesterone, and 5 μM Cilostamide. After five days of LIVC, the COCs were submitted to an in vitro maturation procedure. The results indicate successful in vitro development of COCs, evidenced by a significant increase in oocyte diameter (p < 0.000) and the preservation of gap junction communication between oocyte and cumulus cells. The gradual uncoupling was accompanied by a progressive chromatin transition from the non-surrounded nucleolus (NSN) to the surrounded nucleolus (SN) (p < 0.000), coupled with a gradual decrease in global transcriptional activity and an increase in oocyte meiotic competence (p < 0.000). Maintenance of oocyte-cumulus investment architecture, viability, and metaphase II capability was significantly higher in COCs collected during the breeding season (p < 0.000), suggesting higher quality than those obtained during the non-breeding season. In conclusion, our study confirms LIVC feasibility in sheep, emphasizing increased effectiveness during the breeding season in isolating higher-quality COCs from EAFs. These findings can influence improving the LIVC system in mammals with seasonal reproduction.
Collapse
Affiliation(s)
- Mohammadreza Ebrahimi
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, Sassari, Italy; Department of Animal Science, Agricultural Research Agency of Sardinia, 07100, Sassari, Italy.
| | - Maria Dattena
- Department of Animal Science, Agricultural Research Agency of Sardinia, 07100, Sassari, Italy
| | - Laura Mara
- Department of Animal Science, Agricultural Research Agency of Sardinia, 07100, Sassari, Italy.
| | - Valeria Pasciu
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, Sassari, Italy
| | - Francesca D Sotgiu
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, Sassari, Italy
| | - Fabrizio Chessa
- Department of Animal Science, Agricultural Research Agency of Sardinia, 07100, Sassari, Italy
| | - Alberto Maria Luciano
- Reproductive and Developmental Biology Laboratory (ReDBioLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Via Dell'Università, 6 - 26900, Lodi, Italy
| | - Fiammetta Berlinguer
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, Sassari, Italy
| |
Collapse
|
2
|
Gómez-Guzmán JA, Parra-Bracamonte GM, Velazquez MA. Impact of Heat Stress on Oocyte Developmental Competence and Pre-Implantation Embryo Viability in Cattle. Animals (Basel) 2024; 14:2280. [PMID: 39123806 PMCID: PMC11311040 DOI: 10.3390/ani14152280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Rectal and vaginal temperatures are utilised in both in vivo and in vitro models to study the effects of heat stress on oocyte competence and embryo viability in cattle. However, uterine temperature increases by only 0.5 °C in heat-stressed cows, significantly lower than simulated increases in in vitro models. Temperature variations within oviducts and ovarian follicles during heat stress are poorly understood or unavailable, and evidence is lacking that oocytes and pre-implantation embryos experience mild (40 °C) or severe (41 °C) heat stress inside the ovarian follicle and the oviduct and uterus, respectively. Gathering detailed temperature data from the reproductive tract and follicles is crucial to accurately assess oocyte competence and embryo viability under realistic heat stress conditions. Potential harm from heat stress on oocytes and embryos may result from reduced nutrient availability (e.g., diminished blood flow to the reproductive tract) or other unidentified mechanisms affecting tissue function rather than direct thermal effects. Refining in vivo stress models in cattle is essential to accurately identify animals truly experiencing heat stress, rather than assuming heat stress exposure as done in most studies. This will improve model reliability and aid in the selection of heat-tolerant animals.
Collapse
Affiliation(s)
- Javier A. Gómez-Guzmán
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.A.G.-G.); (G.M.P.-B.)
| | - Gaspar M. Parra-Bracamonte
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.A.G.-G.); (G.M.P.-B.)
| | - Miguel A. Velazquez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
3
|
Wrzecińska M, Kowalczyk A, Kordan W, Cwynar P, Czerniawska-Piątkowska E. Disorder of Biological Quality and Autophagy Process in Bovine Oocytes Exposed to Heat Stress and the Effectiveness of In Vitro Fertilization. Int J Mol Sci 2023; 24:11164. [PMID: 37446340 DOI: 10.3390/ijms241311164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
The main problem in dairy herds is reproductive disorders, which are influenced by many factors, including temperature. Heat stress reduces the quality of oocytes and their maturation through the influence of, e.g., mitochondrial function. Mitochondria are crucial during oocyte maturation as well as the process of fertilization and embryonic development. Disturbances related to high temperature will be increasingly observed due to global warming. In present studies, we have proven that exposure to high temperatures during the cleaving of embryos statistically significantly (at the level of p < 0.01) reduces the percentage of oocytes that cleaved and developed into blastocysts eight days after insemination. The study showed the highest percentage of embryos that underwent division in the control group (38.3 °C). The value was 88.10 ± 6.20%, while the lowest was obtained in the study group at 41.0 °C (52.32 ± 8.40%). It was also shown that high temperature has a statistically significant (p < 0.01) effect on the percentage of embryos that developed from the one-cell stage to blastocysts. The study showed that exposure to a temperature of 41.0 °C significantly reduced the percentage of embryos that split relative to the control group (38.3 °C; 88.10 ± 6.20%). Moreover, it was noted that the highest tested temperature limits the development of oocytes to the blastocyst stage by 5.00 ± 9.12% compared to controls (33.33 ± 7.10%) and cleaved embryos to blastocysts by 3.52 ± 6.80%; the control was 39.47 ± 5.40%. There was also a highly significant (p < 0.0001) effect of temperature on cytoplasmic ROS levels after 6 and 12 h IVM. The highest level of mitochondrial ROS was found in the group of oocytes after 6 h IVM at 41.0 °C and the lowest was found in the control group. In turn, at 41.0 °C after 12 h of IVM, the mitochondrial ROS level had a 2.00 fluorescent ratio, and the lowest in the group was 38.3 °C (1.08). Moreover, with increasing temperature, a decrease in the expression level of both LC3 and SIRT1 protein markers was observed. It was proved that the autophagy process was impaired as a result of high temperature. Understanding of the cellular and molecular responses of oocytes to elevated temperatures will be helpful in the development of heat resistance strategies in dairy cattle.
Collapse
Affiliation(s)
- Marcjanna Wrzecińska
- Department of Ruminant Science, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - Alicja Kowalczyk
- Department of Environment Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 38C, 50-576 Wroclaw, Poland
| | - Władysław Kordan
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury, 10-718 Olsztyn, Poland
| | - Przemysław Cwynar
- Department of Environment Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 38C, 50-576 Wroclaw, Poland
| | - Ewa Czerniawska-Piątkowska
- Department of Ruminant Science, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| |
Collapse
|
4
|
Rhoads ML. Review: Reproductive consequences of whole-body adaptations of dairy cattle to heat stress. Animal 2023; 17 Suppl 1:100847. [PMID: 37567679 DOI: 10.1016/j.animal.2023.100847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 08/13/2023] Open
Abstract
Heat stress has far-reaching ramifications for agricultural production and the severity of its impact has increased alongside the growing threats of global warming. Climate change is exacerbating the already-severe consequences of seasonal heat stress and is predicted to cause additional losses in reproductive performance, milk production and overall productivity. Estimated and predicted losses are staggering, and without advancement in production practices during heat stress, these projected losses will threaten the human food supply. This is particularly concerning as the worldwide population and, thus, demand for animal products grows. As such, there is an urgent need for the development of technologies and management strategies capable of improving animal production capacity and efficiency during periods of heat stress. Reproduction is a major component of animal productivity, and subfertility during thermal stress is ultimately the result of both reproductive and whole-body physiological responses to heat stress. Improving reproductive performance during seasonal heat stress requires a thorough understanding of its effects on the reproductive system as well as other physiological systems involved in the whole-body response to elevated ambient temperature. To that end, this review will explore the reproductive repercussions of whole-body consequences of heat stress, including elevated body temperature, altered metabolism and circulating lipopolysaccharide. A comprehensive understanding of the physiological responses to heat stress is a prerequisite for improving fertility, and thus, the overall productivity of dairy cattle experiencing heat stress.
Collapse
Affiliation(s)
- M L Rhoads
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
5
|
Su N, Wang Q, Liu HY, Li LM, Tian T, Yin JY, Zheng W, Ma QX, Wang TT, Li T, Yang TL, Li JM, Diao NC, Shi K, Du R. Prevalence of bovine viral diarrhea virus in cattle between 2010 and 2021: A global systematic review and meta-analysis. Front Vet Sci 2023; 9:1086180. [PMID: 36733426 PMCID: PMC9887317 DOI: 10.3389/fvets.2022.1086180] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Background Bovine viral diarrhea is one of the diseases that cause huge economic losses in animal husbandry. Many countries or regions have successively introduced eradication plans, but BVDV still has a high prevalence in the world. This meta-analysis aims to investigate the prevalence and risk factors of BVDV in the world in recent 10 years, and is expected to provide some reference and theoretical basis for BVDV control plans in different regions. Method Relevant articles published from 2010 to 2021 were mainly retrieved from NCBI, ScienceDirect, Chongqing VIP, Chinese web of knowledge (CNKI), web of science and Wanfang databases. Results 128 data were used to analyze the prevalence of BVDV from 2010 to 2021. BVDV antigen prevalence rate is 15.74% (95% CI: 11.35-20.68), antibody prevalence rate is 42.77% (95% CI: 37.01-48.63). In the two databases of antigen and antibody, regions, sampling time, samples, detection methods, species, health status, age, sex, breeding mode, and seasonal subgroups were discussed and analyzed, respectively. In the antigen database, the prevalence of dairy cows in the breed subgroup, ELISA in the detection method subgroup, ear tissue in the sample subgroup, and extensive breeding in the breeding mode were the lowest, with significant differences. In the antibody database, the prevalence rate of dairy cows in the breed subgroup and intensive farming was the highest, with a significant difference. The subgroups in the remaining two databases were not significantly different. Conclusion This meta-analysis determined the prevalence of BVDV in global cattle herds from 2010 to 2021. The prevalence of BVDV varies from region to region, and the situation is still not optimistic. In daily feeding, we should pay attention to the rigorous and comprehensive management to minimize the spread of virus. The government should enforce BVDV prevention and control, implement control or eradication policies according to local conditions, and adjust the policies in time.
Collapse
Affiliation(s)
- Nuo Su
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qi Wang
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hong-Ying Liu
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Lian-Min Li
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Tian Tian
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ji-Ying Yin
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Wei Zheng
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qing-Xia Ma
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ting-Ting Wang
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ting Li
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Tie-Lin Yang
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jian-Ming Li
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Nai-Chao Diao
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Kun Shi
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China,*Correspondence: Kun Shi ✉
| | - Rui Du
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China,Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China,Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China,Rui Du ✉
| |
Collapse
|
6
|
Elgendy O, Kitahara G, Taniguchi S, Osawa T. 5-Aminolevulinic acid combined with sodium ferrous citrate mitigates effects of heat stress on bovine oocyte developmental competence. J Reprod Dev 2022; 68:271-277. [PMID: 35705297 PMCID: PMC9334322 DOI: 10.1262/jrd.2021-145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
High summer temperatures have deleterious effects on oocyte developmental competence. The antioxidant and autophagy-related properties of 5-aminolevulinic acid (5-ALA) gives the compound a
broad range of biological activities. This study aimed to evaluate the effects of: 1) a high temperature-humidity index (THI) on the developmental competence of bovine oocytes, and 2) 5-ALA
administration in combination with sodium ferrous citrate (SFC) during in vitro maturation (IVM) on bovine oocyte developmental competence evaluated at high THI. Bovine
ovaries were collected from a local slaughterhouse at moderate environmental temperature (MT; THI of 56.2) and high environmental temperature (HT; THI of 76.7) periods; cumulus-oocyte
complexes (COCs) were aspirated from medium-sized follicles, matured in vitro for 22 h, fertilized, and cultured for 10 days. For COCs collected during the HT period, 0
(control), 0.01, 0.1, 0.5, or 1 µM 5-ALA was added to the maturation medium in combination with SFC at a molar ratio of 1:0.125. The results showed that HT adversely affected blastocyst and
hatching rates compared with MT. Adding 5-ALA/SFC (1 µM/0.125 µM) to the maturation medium of oocytes collected during the HT period improved cumulus cell expansion and blastocyst rates
compared with the no-addition control. In conclusion, this study showed that high THI can disrupt bovine oocyte developmental competence. Adding 5-ALA to SFC ameliorates this negative effect
of heat stress and improves subsequent embryo development.
Collapse
Affiliation(s)
- Omnia Elgendy
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-2192, Japan.,Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan.,Department of Theriogenology, Faculty of Veterinary Medicine, Benha University, Qalyobia 3736, Egypt
| | - Go Kitahara
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-2192, Japan.,Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Shin Taniguchi
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.,One Health Business Department, Neopharma Japan Co., Ltd., Tokyo 102-0071, Japan
| | - Takeshi Osawa
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-2192, Japan.,Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|