1
|
Jiang S, Zhang J, Chu L, Chu X, Yang X, Li Y, Guo T, Zhou Y, Xu D, Mao J, Zheng Z, An Y, Sun H, Dong H, Yu S, Ye R, Hu J, Chu Q, Ni J, Zhu Z. Atypical Response in Metastatic Non-Small Cell Lung Cancer Treated with PD-1/PD-L1 Inhibitors: Radiographic Patterns and Clinical Value of Local Therapy. Cancers (Basel) 2022; 15:cancers15010180. [PMID: 36612176 PMCID: PMC9818210 DOI: 10.3390/cancers15010180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To explore the clinical characteristics, management, and survival outcomes of advanced NSCLC patients treated with PD-1/PD-L1 inhibitors who presented with an atypical response (AR). METHODS A total of 926 PD-1/PD-L1-inhibitor-treated patients with metastatic NSCLC from three academic centers were retrospectively reviewed. All measurable lesions were evaluated by RECIST version 1.1. RESULTS Fifty-six (6.1%) patients developed AR. The median time to the occurrence of AR was 2.0 months. Patients with no fewer than 3 metastatic organs at baseline were more prone to develop AR in advanced NSCLC (p = 0.038). The common sites of progressive lesions were lymph nodes (33.8%) and lungs (29.7%). The majority (78.2%) of patients with AR had only 1-2 progressive tumor lesions, and most (89.1%) of the progressive lesions developed from originally existing tumor sites. There was no significance in terms of survival between patients with AR and those with typical response (TR). Local therapy was an independent predictor for PFS of patients with AR (p = 0.025). CONCLUSIONS AR was not an uncommon event in patients with metastatic NSCLC treated with PD-1/PD-L1 inhibitors, and it had a comparable prognosis to those with TR. Proper local therapy targeting progressive lesions without discontinuing original PD-1/PD-L1 inhibitors may improve patient survival.
Collapse
Affiliation(s)
- Shanshan Jiang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Jinmeng Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Li Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Xiao Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Yida Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Tiantian Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Yue Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Dayu Xu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Jiuang Mao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Zhiqin Zheng
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Yulin An
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Hua Sun
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Huiling Dong
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Silai Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Ruiting Ye
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Jie Hu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
- Correspondence: (J.N.); (Z.Z.); Tel.: +86-137-6197-4092 (J.N.); +86-180-1731-2901 (Z.Z.); Fax: +86-216-417-5242 (J.N. & Z.Z.)
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
- Correspondence: (J.N.); (Z.Z.); Tel.: +86-137-6197-4092 (J.N.); +86-180-1731-2901 (Z.Z.); Fax: +86-216-417-5242 (J.N. & Z.Z.)
| |
Collapse
|
2
|
Wang Y, Li C, Wang Z, Wang Z, Wu R, Wu Y, Song Y, Liu H. Comparison between immunotherapy efficacy in early non-small cell lung cancer and advanced non-small cell lung cancer: a systematic review. BMC Med 2022; 20:426. [PMID: 36345004 PMCID: PMC9641944 DOI: 10.1186/s12916-022-02580-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Currently, immunotherapy is widely used in the treatment of various stages of non-small cell lung cancer. According to clinical experience and results of previous studies, immunotherapy as neoadjuvant therapy seems to exhibit better efficacy against early resectable non-small cell lung cancer as compared to advanced lung cancer, which is often defined as unresectable non-small cell lung cancer. However, this observation has not been established in clinical studies. This systematic review aimed to evaluate the efficacy of immunotherapy in early and late lung cancer, wherein objective response rate (ORR) and disease control rate (DCR) were used as evaluation indexes. The present study also evaluated the safety of immunotherapy in early and late lung cancer, wherein the rate of treatment-related adverse reactions (TRAEs) was used as an indicator. METHODS Electronica databases, including PubMed, Cochrane Library, Embase, and other databases, were searched to identify relevant studies. Besides this, all the available reviews, abstracts, and meeting reports from the main international lung cancer meetings were searched manually. ORR, DCR, and TRAEs were extracted as the primary outcomes. RESULTS A total of 52 randomized controlled trials involving 13,660 patients were shortlisted. It was observed that immunotherapy alone significantly improved DCR in early lung cancer in comparison to advanced lung cancer. Importantly, the improvement in ORR was not to the same extent as reported in the case of advanced lung cancer. The combination of immunotherapy with other therapies, especially immunochemotherapy, significantly improved ORR and DCR in early lung cancer. In terms of safety, immunotherapy either alone or in combination with other therapies exhibited a better safety profile in early lung cancer than in advanced lung cancer. CONCLUSIONS Altogether, the benefits of immunotherapy in early lung cancer appeared to be better than those observed in advanced lung cancer, especially with the regard to the regimen of immunotherapy in combination with chemotherapy. In terms of safety, both immunotherapy alone and its combination with chemotherapy were found to be safer in early lung cancer as compared to advanced lung cancer.
Collapse
Affiliation(s)
- Yimin Wang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, China
| | - Chuling Li
- Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, China
| | - Zimu Wang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, China
| | - Zhaofeng Wang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, China
| | - Ranpu Wu
- Department of Respiratory Medicine, Jinling Hospital, Southeast University School of Medicine, Nanjing, China
| | - Ying Wu
- Department of Respiratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, China.
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, China. .,Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, China.
| | - Hongbing Liu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, China.
| |
Collapse
|
3
|
Lang D, Brauner A, Huemer F, Rinnerthaler G, Horner A, Wass R, Brehm E, Kaiser B, Greil R, Lamprecht B. Sex-Based Clinical Outcome in Advanced NSCLC Patients Undergoing PD-1/PD-L1 Inhibitor Therapy-A Retrospective Bi-Centric Cohort Study. Cancers (Basel) 2021; 14:cancers14010093. [PMID: 35008255 PMCID: PMC8750380 DOI: 10.3390/cancers14010093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Retrospective analyses suggest that men treated with immune-checkpoint inhibitor (ICI) monotherapy for non-small cell lung cancer (NSCLC) have better outcomes than women. However, female patients have more favorable responses when chemotherapy (CHT) is given together with ICI. We aimed to explore the clinical impact of such sex differences in two cohorts, receiving ICI monotherapy or ICI-CHT combination, respectively. We found no significant difference in outcomes between men and women treated with either therapeutic regimen. However, known predictive factors for ICI response such as the expression of programmed-death ligand 1 (PD-L1) on tumor cells or patient performance status had significant implications for men rather than for women. Our results warrant increased research efforts to clarify sex-specific differences in anti-tumor immune response mechanisms and in the efficacy of ICI therapies, especially in women. Abstract Men with non-small cell lung cancer (NSCLC) have a more favorable response to immune-checkpoint inhibitor (ICI) monotherapy, while women especially benefit from ICI-chemotherapy (CHT) combinations. To elucidate such sex differences in clinical practice, we retrospectively analyzed two cohorts treated with either ICI monotherapy (n = 228) or ICI-CHT combination treatment (n = 80) for advanced NSCLC. Kaplan–Meier analyses were used to calculate progression-free (PFS) and overall survival (OS), influencing variables were evaluated using Cox-regression analyses. No significant sex differences for PFS/OS could be detected in either cohort. Men receiving ICI monotherapy had a statistically significant independent impact on PFS by Eastern Cooperative Oncology Group performance status (ECOG) ≥2 (hazard ratio (HR) 1.90, 95% confidence interval (CI): 1.10–3.29, p = 0.021), higher C-reactive protein (CRP; HR 1.06, 95%CI: 1.00–1.11, p = 0.037) and negative programmed death-ligand 1 (PD-L1) status (HR 2.04, 95%CI: 1.32–3.15, p = 0.001), and on OS by CRP (HR 1.09, 95%CI: 1.03–1.14, p = 0.002). In men on ICI-CHT combinations, multivariate analyses (MVA) revealed squamous histology (HR 4.00, 95%CI: 1.41–11.2, p = 0.009) significant for PFS; and ECOG ≥ 2 (HR 5.58, 95%CI: 1.88–16.5, p = 0.002) and CRP (HR 1.19, 95%CI: 1.06–1.32, p = 0.002) for OS. Among women undergoing ICI monotherapy, no variable proved significant for PFS, while ECOG ≥ 2 had a significant interaction with OS (HR 1.90, 95%CI 1.04–3.46, p = 0.037). Women treated with ICI-CHT had significant MVA findings for CRP with both PFS (HR 1.09, 95%CI: 1.02–1.16, p = 0.007) and OS (HR 1.11, 95%CI: 1.03–1.19, p = 0.004). Although men and women responded similarly to both ICI mono- and ICI-CHT treatment, predictors of response differed by sex.
Collapse
Affiliation(s)
- David Lang
- Department of Pulmonology, Johannes Kepler University Hospital Linz, Krankenhausstrasse 9, 4020 Linz, Austria; (A.H.); (R.W.); (E.B.); (B.K.); (B.L.)
- Correspondence: ; Tel.: +43-576-8083-6911
| | - Anna Brauner
- Medical Faculty, Johannes Kepler University Linz, Altenberger Strasse 69, 4020 Linz, Austria;
| | - Florian Huemer
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (G.R.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
| | - Gabriel Rinnerthaler
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (G.R.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
| | - Andreas Horner
- Department of Pulmonology, Johannes Kepler University Hospital Linz, Krankenhausstrasse 9, 4020 Linz, Austria; (A.H.); (R.W.); (E.B.); (B.K.); (B.L.)
| | - Romana Wass
- Department of Pulmonology, Johannes Kepler University Hospital Linz, Krankenhausstrasse 9, 4020 Linz, Austria; (A.H.); (R.W.); (E.B.); (B.K.); (B.L.)
| | - Elmar Brehm
- Department of Pulmonology, Johannes Kepler University Hospital Linz, Krankenhausstrasse 9, 4020 Linz, Austria; (A.H.); (R.W.); (E.B.); (B.K.); (B.L.)
| | - Bernhard Kaiser
- Department of Pulmonology, Johannes Kepler University Hospital Linz, Krankenhausstrasse 9, 4020 Linz, Austria; (A.H.); (R.W.); (E.B.); (B.K.); (B.L.)
| | - Richard Greil
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (G.R.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
| | - Bernd Lamprecht
- Department of Pulmonology, Johannes Kepler University Hospital Linz, Krankenhausstrasse 9, 4020 Linz, Austria; (A.H.); (R.W.); (E.B.); (B.K.); (B.L.)
| |
Collapse
|
4
|
Dall'Olio FG, Marabelle A, Caramella C, Garcia C, Aldea M, Chaput N, Robert C, Besse B. Tumour burden and efficacy of immune-checkpoint inhibitors. Nat Rev Clin Oncol 2021; 19:75-90. [PMID: 34642484 DOI: 10.1038/s41571-021-00564-3] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 01/07/2023]
Abstract
Accumulating evidence suggests that a high tumour burden has a negative effect on anticancer immunity. The concept of tumour burden, simply defined as the total amount of cancer in the body, in contrast to molecular tumour burden, is often poorly understood by the wider medical community; nonetheless, a possible role exists in defining the optimal treatment strategy for many patients. Historically, tumour burden has been assessed using imaging. In particular, CT scans have been used to evaluate both the number and size of metastases as well as the number of organs involved. These methods are now often complemented by metabolic tumour burden, measured using the more recently developed 2-deoxy-2-[18F]-fluoro-D-glucose (FDG)-PET/CT. Serum-based biomarkers, such as lactate dehydrogenase, can also reflect tumour burden and are often also correlated with a poor response to immune-checkpoint inhibitors. Other circulating markers (such as circulating free tumour DNA and/or circulating tumour cells) are also attracting research interest as surrogate markers of tumour burden. In this Review, we summarize evidence supporting the utility of tumour burden as a biomarker to guide the use of immune-checkpoint inhibitors. We also describe data and provide perspective on the various tools used for tumour burden assessment, with a particular emphasis on future therapeutic strategies that might address the issue of inferior outcomes among patients with cancer with a high tumour burden.
Collapse
Affiliation(s)
- Filippo G Dall'Olio
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France.,Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Bologna, Italy
| | - Aurélien Marabelle
- Drug Development Department, Gustave Roussy, Villejuif, France.,Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, France.,Institut national de la santé et de la recherche médicale (INSERM), Gustave Roussy, Villejuif, France
| | - Caroline Caramella
- Department of Radiology, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Camilo Garcia
- Department of Nuclear Medicine and Endocrine Oncology, Institut Gustave Roussy and University Paris-Saclay, Villejuif, France
| | - Mihaela Aldea
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy, Villejuif, France.,Faculty of Pharmacy, University Paris-Saclay, Chatenay-Malabry, France
| | - Caroline Robert
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France.,Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, France.,Institut national de la santé et de la recherche médicale (INSERM), Gustave Roussy, Villejuif, France
| | - Benjamin Besse
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France. .,Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, France.
| |
Collapse
|
5
|
Mielgo-Rubio X, Montemuiño S, Jiménez U, Luna J, Cardeña A, Mezquita L, Martín M, Couñago F. Management of Resectable Stage III-N2 Non-Small-Cell Lung Cancer (NSCLC) in the Age of Immunotherapy. Cancers (Basel) 2021; 13:cancers13194811. [PMID: 34638296 PMCID: PMC8507745 DOI: 10.3390/cancers13194811] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary The treatment of resectable stage III non-small-cell lung cancer with N2 lymph node involvement is usually multimodal and is generally based on neoadjuvant chemotherapy +/− radiotherapy followed by surgery, but the cure rate is still low. Immunotherapy based on anti-PD1/PD-L1 immune checkpoint inhibitors has improved survival in advanced and stage III non-resectable NSCLC patients and is being studied in earlier stages to improve the cure rate of lung cancer. In this article, we review all therapeutic approaches to stage III-N2 NSCLC, analysing both completed and ongoing studies that evaluate the addition of immunotherapy with or without chemotherapy and/or radiotherapy. Abstract Stage III non-small-cell lung cancer (NSCLC) with N2 lymph node involvement is a heterogeneous group with different potential therapeutic approaches. Patients with potentially resectable III-N2 NSCLC are those who are considered to be able to receive a multimodality treatment that includes tumour resection after neoadjuvant therapy. Current treatment for these patients is based on neoadjuvant chemotherapy +/− radiotherapy followed by surgery and subsequent assessment for adjuvant chemotherapy and/or radiotherapy. In addition, some selected III-N2 patients could receive upfront surgery or pathologic N2 incidental involvement can be found a posteriori during analysis of the surgical specimen. The standard treatment for these patients is adjuvant chemotherapy and evaluation for complementary radiotherapy. Despite being a locally advanced stage, the cure rate for these patients continues to be low, with a broad improvement margin. The most immediate hope for improving survival data and curing these patients relies on integrating immunotherapy into perioperative treatment. Immunotherapy based on anti-PD1/PD-L1 immune checkpoint inhibitors is already a standard treatment in stage III unresectable and advanced NSCLC. Data from the first phase II studies in monotherapy neoadjuvant therapy and, in particular, in combination with chemotherapy, are highly promising, with impressive improved and complete pathological response rates. Despite the lack of confirmatory data from phase III trials and long-term survival data, and in spite of various unresolved questions, immunotherapy will soon be incorporated into the armamentarium for treating stage III-N2 NSCLC. In this article, we review all therapeutic approaches to stage III-N2 NSCLC, analysing both completed and ongoing studies that evaluate the addition of immunotherapy with or without chemotherapy and/or radiotherapy.
Collapse
Affiliation(s)
- Xabier Mielgo-Rubio
- Department of Medical Oncology, Hospital Universitario Fundación Alcorcón, 28922 Madrid, Spain;
- Correspondence:
| | - Sara Montemuiño
- Department of Radiation Oncology, Hospital Universitario Fuenlabrada, 28942 Madrid, Spain;
| | - Unai Jiménez
- Department of Thoracic Surgery, Hospital Universitario Cruces, 48903 Barakaldo, Bizkaia, Spain;
| | - Javier Luna
- Department of Radiation Oncology, Fundación Jiménez Díaz, 28040 Madrid, Spain;
| | - Ana Cardeña
- Department of Medical Oncology, Hospital Universitario Fundación Alcorcón, 28922 Madrid, Spain;
| | - Laura Mezquita
- Department of Medical Oncology, Hospital Universitari Clínic Barcelona, 08036 Barcelona, Spain;
| | - Margarita Martín
- Department of Radiation Oncology, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain;
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, 28223 Madrid, Spain;
- Department of Radiation Oncology, Hospital La Luz, 28003 Madrid, Spain
- Medicine Department, School of Biomedical Siciences, Universidad Europea, 28670 Madrid, Spain
| |
Collapse
|
6
|
Remon J, Menis J, Levy A, De Ruysscher DKM, Hendriks LEL. How to optimize the incorporation of immunotherapy in trials for oligometastatic non-small cell lung cancer: a narrative review. Transl Lung Cancer Res 2021; 10:3486-3502. [PMID: 34430382 PMCID: PMC8350101 DOI: 10.21037/tlcr-20-1065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/24/2021] [Indexed: 12/23/2022]
Abstract
Patients with oligometastatic disease (OMD) non-small cell lung cancer (NSCLC) are considered as a subgroup of metastatic NSCLC that can obtain long-term survival or even cure. Oligometastatic refers to a state of a limited number of metastases in a limited number of organs. In clinical guidelines it is stated that patients with oligometastatic NSCLC can benefit from the addition of local radical therapy (LRT) to systemic therapy. With the introduction of minimally invasive surgery, advances in interventional radiology and stereotactic radiotherapy (SRT), LRT is becoming feasible for more and more patients. Furthermore, the introduction of immune checkpoint inhibitors (ICI) in the treatment landscape of advanced NSCLC has improved the survival of these patients. Importantly, the use of ICI in combination with LRT is also of interest in the subgroup of NSCLC patients with OMD. For example, it has been suggested that SRT may synergize with ICI as several preclinical studies reported an increased tumor antigen release, improved antigen presentation, and T-cell infiltration in irradiated tumors. In this narrative review, we describe the current evidence of immunotherapy treatment in OMD NSCLC, with a focus on future trial design and problems that need to be addressed.
Collapse
Affiliation(s)
- Jordi Remon
- Department of Medical Oncology, Centro Integral Oncológico Clara Campal (HM CIOCC), Hospital HM Delfos, HM Hospitales, Barcelona, Spain
| | - Jessica Menis
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Medical Oncology Department, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Antonin Levy
- Department of Radiation Oncology, Gustave Roussy, Institut d'Oncologie Thoracique (IOT), Université Paris-Saclay, F-94805, Villejuif, France.,INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, F-94805, Villejuif, France.,Université Paris-Saclay, F-94270, Le Kremlin-Bicêtre, France
| | - Dirk K M De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Lizza E L Hendriks
- Department of Pulmonary Diseases GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
7
|
Wang M, Tang W, Gong N, Liu P. Sodium Danshensu inhibits the progression of lung cancer by regulating PI3K/Akt signaling pathway. Drug Dev Res 2021; 83:88-96. [PMID: 34196024 DOI: 10.1002/ddr.21846] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022]
Abstract
Sodium Danshensu, extracted from the root of the Salvia miltiorrhiza, has pleiotropic effects including anti-oxidation, anti-inflammation and anti-tumor. However, whether Sodium Danshensu has an anti-cancer effect in lung cancer remains to be elucidated. The present study aimed to illustrate the effects of Sodium Danshensu on lung cancer cells and the potential molecular mechanisms. BEAS-2B, A549, and NCI-H1299 cells were stimulated with 25, 50, and 100 μM Sodium Danshensu for 24, 48, and 72 h, and then cell viability, apoptosis, migration and invasion were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry and Transwell assays, respectively. Moreover, the levels of Proliferating cell nuclear antigen (PCNA), matrix metalloproteinase 9 (MMP9), B-cell lymphoma-2 (Bcl-2) associated X (Bax), Bcl-2, phosphorylated (p)-phosphoinositide 3-kinase (PI3K), and p-Protein kinase B (AKT) in lung cancer cells were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) and/or Western blot assays. We observed that Sodium Danshensu suppressed cells viability, migration, and invasion, as well as promoted cells apoptosis in A549 and NCI-H1299 cells in a dose-dependent manner, while Sodium Danshensu had no cytotoxic effect on the proliferation activity of BEAS-2B cells. Moreover, the expression of PCNA, MMP9, Bcl-2 were decreased, but Bax was up-regulated in Sodium Danshensu-treated A549 and NCI-H1299 cells. Our findings also revealed that Sodium Danshensu inhibited PI3K/AKT pathway in A549 and NCI-H1299 cells. In conclusion, our study provided the first evidence that Sodium Danshensu suppressed the malignant biological behaviors of lung cancer cells, indicating that Sodium Danshensu might be a latent candidate for lung cancer therapy.
Collapse
Affiliation(s)
- Miao Wang
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Weihua Tang
- Department of Radiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Nianjin Gong
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Peijun Liu
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| |
Collapse
|
8
|
Chen Z, Cao K, Hou Y, Lu F, Li L, Wang L, Xia Y, Zhang L, Chen H, Li R, Chang L, Li W. PTTG1 knockdown enhances radiation-induced antitumour immunity in lung adenocarcinoma. Life Sci 2021; 277:119594. [PMID: 33984357 DOI: 10.1016/j.lfs.2021.119594] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/24/2021] [Accepted: 05/02/2021] [Indexed: 12/25/2022]
Abstract
AIM Ionizing radiation (IR) can induce local and systemic antitumour immune responses to some degree and augment immunotherapeutic efficacy. IR may also increase residual tumour cell invasion and elicit immunosuppression in the tumour microenvironment (TME). It remains poorly understand, whether IR leads to immune negative response or invasive capacity increases in lung adenocarcinoma (LAC). MATERIALS AND METHODS RNA interference (RNAi) was used to silence pituitary tumour-transforming gene-1 (PTTG1) and SMAD3 expression in LAC cells. A coculture system of tumour cells and PBMCs was constructed. Cells were exposed to different doses (0, 4 and 8 Gy) of X-ray irradiation. Flow cytometric analysis and Transwell assays were applied. An orthotopic Lewis lung cancer (LLC) mouse tumour model was established. Bioluminescence imaging (BLI) was used. LLC tumours were exposed to a single 15 Gy dose of X-ray irradiation. KEY FINDINGS PTTG1 knockdown reinforced the inhibitory effect of IR on the invasive ability of A549 cells and enhanced the antitumour T cell immunity induced by IR via the transforming growth factor-β1 (TGF-β1)/SMAD3 pathway. Positive antitumour immune response and immunosuppression were simultaneously triggered by a single 15 Gy dose of local tumour irradiation. PTTG1 knockdown weakened invasive capacity and promoted the immune response balance induced by IR to tilt towards active immunity, which contributed to reduce metastasis and prolonged overall survival (OS) in orthotopic LLC tumour-bearing mouse. SIGNIFICANCE Targeted blockade of PTTG1 and the TGF-β1/SMAD3 pathway may ameliorate the immunosuppressive TME and enhance the systemic antitumour immune response induced by a single high-dose IR treatment.
Collapse
Affiliation(s)
- Zhengting Chen
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, PR China; Key Laboratory of Lung Cancer Research of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Center, Kunming, Yunnan 650118, PR China
| | - Ke Cao
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, PR China; Key Laboratory of Lung Cancer Research of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Center, Kunming, Yunnan 650118, PR China
| | - Yu Hou
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, PR China
| | - Fei Lu
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, PR China
| | - Lan Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, PR China
| | - Li Wang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, PR China
| | - Yaoxiong Xia
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, PR China
| | - Lan Zhang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, PR China
| | - Haixia Chen
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, PR China; Key Laboratory of Lung Cancer Research of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Center, Kunming, Yunnan 650118, PR China
| | - Rong Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, PR China; Key Laboratory of Lung Cancer Research of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Center, Kunming, Yunnan 650118, PR China
| | - Li Chang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, PR China.
| | - Wenhui Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, PR China.
| |
Collapse
|
9
|
Zhao D, Xie B, Yang Y, Yan P, Liang SN, Lin Q. Progress in immunotherapy for small cell lung cancer. World J Clin Oncol 2020; 11:370-377. [PMID: 32874950 PMCID: PMC7450814 DOI: 10.5306/wjco.v11.i6.370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/18/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Small-cell lung cancer (SCLC) is a special type of lung cancer that belongs to highly aggressive neuroendocrine tumors. At present, radiotherapy and chemotherapy remain the mainstay of treatment for SCLC. Progress in targeted therapies for SCLC with driver mutations has been slow, and these therapies are still under investigation in preclinical or early-phase clinical trials, and research on antiangiogenic tyrosine kinase inhibitors (e.g., anlotinib) has achieved some success. Immunotherapy is becoming an important treatment strategy for SCLC after radiotherapy and chemotherapy. In this article we review the recent advances in immunotherapy for SCLC.
Collapse
Affiliation(s)
- Dong Zhao
- Department of Oncology, The People’s Hospital of Lixin County, Bozhou 236700, Anhui Province, China
| | - Bing Xie
- Department of Oncology, The People’s Hospital of Lixin County, Bozhou 236700, Anhui Province, China
| | - Yong Yang
- Department of Oncology, The People’s Hospital of Lixin County, Bozhou 236700, Anhui Province, China
| | - Peng Yan
- Department of Oncology, The People’s Hospital of Lixin County, Bozhou 236700, Anhui Province, China
| | - Sheng-Nan Liang
- Department of Oncology, The People’s Hospital of Lixin County, Bozhou 236700, Anhui Province, China
| | - Qiang Lin
- Department of Oncology, North China Petroleum Bureau General Hospital, Hebei Medical University, Renqiu 062552, Hebei Province, China
| |
Collapse
|