1
|
Kaur P, Singh SK, Mishra MK, Singh S, Singh R. Promising Combinatorial Therapeutic Strategies against Non-Small Cell Lung Cancer. Cancers (Basel) 2024; 16:2205. [PMID: 38927911 PMCID: PMC11201636 DOI: 10.3390/cancers16122205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) presents a complex and diverse disease, exhibiting variations at individuals' cellular and histological levels. This complexity gives rise to different subtypes and genetic mutations, posing challenges for accurate diagnosis and effective treatment. Nevertheless, continuous progress in medical research and therapies is continually shaping the landscape of NSCLC diagnosis and management. The treatment of NSCLC has undergone significant advancements in recent years, especially with the emergence of targeted therapies that have shown remarkable efficacy in patients with actionable mutations. This has ushered in the era of personalized medicine in NSCLC treatment, with improvements in molecular and immunohistochemical techniques contributing to enhanced progression-free survival. This review focuses on the latest progress, challenges, and future directions in developing targeted therapies for NSCLC, including tyrosine kinase inhibitors (TKIs), DNA-damaging agents, immunotherapy regimens, natural drug therapy, and nanobodies. Furthermore, recent randomized studies have demonstrated enhanced overall survival in patients receiving different targeted and natural drug therapies.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (P.K.); (S.K.S.); (S.S.)
| | - Santosh Kumar Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (P.K.); (S.K.S.); (S.S.)
| | - Manoj K. Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL 36014, USA;
| | - Shailesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (P.K.); (S.K.S.); (S.S.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (P.K.); (S.K.S.); (S.S.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
2
|
Fabbri L, Di Federico A, Astore M, Marchiori V, Rejtano A, Seminerio R, Gelsomino F, De Giglio A. From Development to Place in Therapy of Lorlatinib for the Treatment of ALK and ROS1 Rearranged Non-Small Cell Lung Cancer (NSCLC). Diagnostics (Basel) 2023; 14:48. [PMID: 38201357 PMCID: PMC10804309 DOI: 10.3390/diagnostics14010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Following the results of the CROWN phase III trial, the third-generation macrocyclic ALK inhibitor lorlatinib has been introduced as a salvage option after the failure of a first-line TKI in ALK-rearranged NSCLC, while its precise role in the therapeutic algorithm of ROS1 positive disease is still to be completely defined. The ability to overcome acquired resistance to prior generation TKIs (alectinib, brigatinib, ceritinib, and crizotinib) and the high intracranial activity in brain metastatic disease thanks to increased blood-brain barrier penetration are the reasons for the growing popularity and interest in this molecule. Nevertheless, the major vulnerability of this drug resides in a peculiar profile of related collateral events, with neurological impairment being the most conflicting and debated clinical issue. The cognitive safety concern, the susceptibility to heterogeneous resistance pathways, and the absence of a valid alternative in the second line are strongly jeopardizing a potential paradigm shift in this oncogene-addicted disease. So, when prescribing lorlatinib, clinicians must face two diametrically opposed characteristics: a great therapeutic potential without the intrinsic limitations of its precursor TKIs, a cytotoxic activity threatened by suboptimal tolerability, and the unavoidable onset of resistance mechanisms we cannot properly manage yet. In this paper, we give a critical point of view on the stepwise introduction of this promising drug into clinical practice, starting from its innovative molecular and biochemical properties to intriguing future developments, without forgetting its weaknesses.
Collapse
Affiliation(s)
- Laura Fabbri
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (L.F.); (A.D.F.); (M.A.); (V.M.); (A.R.); (R.S.)
| | - Alessandro Di Federico
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (L.F.); (A.D.F.); (M.A.); (V.M.); (A.R.); (R.S.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138 Bologna, Italy;
| | - Martina Astore
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (L.F.); (A.D.F.); (M.A.); (V.M.); (A.R.); (R.S.)
| | - Virginia Marchiori
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (L.F.); (A.D.F.); (M.A.); (V.M.); (A.R.); (R.S.)
| | - Agnese Rejtano
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (L.F.); (A.D.F.); (M.A.); (V.M.); (A.R.); (R.S.)
| | - Renata Seminerio
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (L.F.); (A.D.F.); (M.A.); (V.M.); (A.R.); (R.S.)
| | - Francesco Gelsomino
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138 Bologna, Italy;
| | - Andrea De Giglio
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (L.F.); (A.D.F.); (M.A.); (V.M.); (A.R.); (R.S.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
3
|
Malik P, Rani R, Solanki R, Patel VH, Mukherjee TK. Understanding the feasibility of chemotherapeutic and immunotherapeutic targets against non-small cell lung cancers: an update of resistant responses and recent combinatorial therapies. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:850-895. [PMID: 37970206 PMCID: PMC10645466 DOI: 10.37349/etat.2023.00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/17/2023] [Indexed: 11/17/2023] Open
Abstract
Despite consistent progress in prompt diagnosis and curative therapies in the last decade, lung cancer (LC) continues to threaten mankind, accounting for nearly twice the casualties compared to prostate, breast, and other cancers. Statistics associate ~25% of 2021 cancer-related deaths with LC, more than 80% of which are explicitly caused by tobacco smoking. Prevailing as small and non-small cell pathologies, with respective occurring frequency of nearly 15% and 80-85%, non-small cell LCs (NSCLCs) are prominently distinguished into lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), subtypes. Since the first use of epidermal growth factor receptor (EGFR) inhibitor gefitinib for NSCLC treatment in 2002, immense progress has been made for targeted therapies with the next generation of drugs spanning across the chronological generations of small molecule inhibitors. The last two years have overseen the clinical approval of more than 10 therapeutic agents as first-line NSCLC medications. However, uncertain mutational aberrations as well as systemic resistant responses, and abysmal overall survival curtail the combating efficacies. Of late, immune checkpoint inhibitors (ICIs) against various molecules including programmed cell death-1 (PD-1) and its ligand (PD-L1) have been demonstrated as reliable LC treatment targets. Keeping these aspects in mind, this review article discusses the success of NSCLC chemo and immunotherapies with their characteristic effectiveness and future perspectives.
Collapse
Affiliation(s)
- Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Ruma Rani
- Indian Council of Agricultural Research (ICAR)-National Research Centre on Equines, Hisar 125001, Haryana, India
| | - Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | | | | |
Collapse
|
4
|
Fukuda A, Yoshida T. Treatment of advanced ALK-rearranged NSCLC following second-generation ALK-TKI failure. Expert Rev Anticancer Ther 2023; 23:1157-1167. [PMID: 37772744 DOI: 10.1080/14737140.2023.2265566] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023]
Abstract
INTRODUCTION Anaplastic lymphoma kinase (ALK) gene rearrangement is detected in approximately 3-5% of non-small cell lung cancer (NSCLC) cases. Tyrosine kinase inhibitors (TKIs) targeting ALK rearrangement (ALK-TKIs) have shown significant efficacy and improved the survival of patients with NSCLC exhibiting ALK rearrangement. However, almost all patients exhibit disease progression during TKI therapy owing to resistance acquired through various molecular mechanisms, including both ALK-dependent and ALK-independent. AREAS COVERED Here, we review the mechanisms underlying resistance to second-generation ALK-TKIs, and the clinical management strategies following resistance in patients with ALK rearrangement-positive NSCLC. EXPERT OPINION Treatment strategies following the failure of second-generation ALK-TKIs failure should be based on resistant mechanisms. For patients with ALK mutations who exhibit resistance to second-generation ALK-TKIs, lorlatinib is the primary treatment option. However, the identification of resistance profiles of second-generation ALK-TKIs can aid in the selection of an appropriate treatment strategy. In cases of ALK-dependent resistance mutations, lorlatinib could be the first choice as it exhibits the broadest coverage of mutations that lead to resistance against second-generation ALK-TKIs, such as G1202R, and L1196M. In cases of no resistance mutations, atezolizumab, bevacizumab, and platinum-based chemotherapy could be the alternative treatment options.
Collapse
Affiliation(s)
- Akito Fukuda
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
5
|
Kobayashi T, Uehara Y, Watanabe K, Hishima T, Hosomi Y. Successful Treatment of ALK-Positive Large-Cell Neuroendocrine Carcinoma of the Lung With Sequential ALK Inhibitors: A Case Report. JTO Clin Res Rep 2023; 4:100538. [PMID: 37456922 PMCID: PMC10345342 DOI: 10.1016/j.jtocrr.2023.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 07/18/2023] Open
Abstract
ALK-positive large-cell neuroendocrine carcinoma (LCNEC) is an exceptionally rare form of lung cancer. The efficacy of ALK inhibitors in treating ALK-positive LCNEC remains unclear. Here, we report a case of ALK-positive LCNEC of the lung, which revealed a sustained clinical benefit (24+ mo of overall survival) after treatment with sequential ALK inhibitors and local therapies. This remarkable improvement in survival underscores the importance of testing metastatic LCNEC for biomarkers, such as ALK rearrangement, using immunohistochemistry or next-generation sequencing, especially in younger patients.
Collapse
Affiliation(s)
- Takayuki Kobayashi
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yuji Uehara
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Kageaki Watanabe
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Tsunekazu Hishima
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yukio Hosomi
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| |
Collapse
|
6
|
Michaux L, Perrier A, Mehlman C, Alshehhi H, Dubois A, Lacave R, Coulet F, Cadranel J, Fallet V. Therapeutic strategies to overcome EGFR mutations as acquired resistance mechanism in ALK-rearranged non-small-cell lung cancer: Case Reports. Front Oncol 2023; 13:1182558. [PMID: 37448514 PMCID: PMC10338053 DOI: 10.3389/fonc.2023.1182558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/30/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction ALK tyrosine kinase inhibitors (ALK TKIs) have improved prognosis in ALK-rearranged (ALK +) non-small-cell lung cancer (NSCLC). However, drug resistance mechanisms occur inevitably during the course of treatment leading to disease progression. Activation of epidermal growth factor receptor (EGFR) bypass signaling pathway is an uncommon cause of acquired resistance to ALK TKIs. Method We present two patients with EML4-ALK rearranged NSCLC, developing an acquired EGFR resistance mutation after receiving multiple lines of ALK TKIs. Results While preclinical models have showed encouraging data, there is a critical need for clinical studies on treatment strategies to overcome this drug resistance. Three real-life therapeutic approaches were used in this report: i) using brigatinib, an inhibitor targeting both ALK and EGFR tyrosine kinases; ii) combining two ALK TKIs together; and iii) delivering doublet platinum chemotherapy. In case 1, time to treatment failure (TTF) was 9.5 months with brigatinib; in case 2, TTF was 10 months with combined TKIs (osimertinib and brigatinib), whereas TTF with chemotherapy was only 2 months. Tolerability profile TKIs combotherapy was acceptable. Conclusion These case reports underline the therapeutic complexity of EGFR-acquired resistance mutation in ALK+ NSCLC and offers some leads to solve this real-life clinical challenge.
Collapse
Affiliation(s)
- Lionel Michaux
- Department of Pulmonology and Thoracic Oncology, Assistance Publique Hôpitaux de Paris, Hôpital Tenon and Groupe de Recherche Clinique 4 (GRC 4), Theranoscan, Sorbonne Université, Paris, France
| | - Alexandre Perrier
- Genetics Department, Assistance Publique Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière and Sorbonne Université, Paris, France
| | - Camille Mehlman
- Department of Pulmonology and Thoracic Oncology, Assistance Publique Hôpitaux de Paris, Hôpital Tenon and Groupe de Recherche Clinique 4 (GRC 4), Theranoscan, Sorbonne Université, Paris, France
| | - Hussa Alshehhi
- Pathology Department, Assistance Publique Hôpitaux de Paris, Hôpital Tenon and Sorbonne Université, Paris, France
| | - Antonin Dubois
- Department of Pharmacy, Assistance Publique Hôpitaux de Paris, Hôpital Tenon and Sorbonne Université, Paris, France
| | - Roger Lacave
- Genetics Department, Assistance Publique Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière and Sorbonne Université, Paris, France
| | - Florence Coulet
- Genetics Department, Assistance Publique Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière and Sorbonne Université, Paris, France
| | - Jacques Cadranel
- Department of Pulmonology and Thoracic Oncology, Assistance Publique Hôpitaux de Paris, Hôpital Tenon and Groupe de Recherche Clinique 4 (GRC 4), Theranoscan, Sorbonne Université, Paris, France
| | - Vincent Fallet
- Department of Pulmonology and Thoracic Oncology, Assistance Publique Hôpitaux de Paris, Hôpital Tenon and Groupe de Recherche Clinique 4 (GRC 4), Theranoscan, Sorbonne Université, Paris, France
| |
Collapse
|
7
|
Hendriks LE, Kerr KM, Menis J, Mok TS, Nestle U, Passaro A, Peters S, Planchard D, Smit EF, Solomon BJ, Veronesi G, Reck M. Oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2023; 34:339-357. [PMID: 36872130 DOI: 10.1016/j.annonc.2022.12.009] [Citation(s) in RCA: 215] [Impact Index Per Article: 215.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 01/24/2023] Open
Affiliation(s)
- L E Hendriks
- Department of Pulmonology, GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - K M Kerr
- Aberdeen Royal Infirmary, Aberdeen University Medical School, Aberdeen, UK
| | - J Menis
- Medical Oncology Department, University and Hospital Trust of Verona, Verona, Italy
| | - T S Mok
- Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - U Nestle
- Department of Radiation Oncology, University Hospital Freiburg, Freiburg, Germany; Department of Radiation Oncology, Kliniken Maria Hilf, Moenchengladbach, Germany
| | - A Passaro
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - S Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne University, Lausanne, Switzerland
| | - D Planchard
- Department of Medical Oncology, Thoracic Group, Gustave-Roussy Villejuif, France
| | - E F Smit
- Thoracic Oncology Service, Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Pulmonary Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - B J Solomon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - G Veronesi
- Faculty of Medicine and Surgery-Vita-Salute San Raffaele University, Milan, Italy; Division of Thoracic Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - M Reck
- Department of Thoracic Oncology, Airway Research Center North, German Center for Lung Research, Lung Clinic, Grosshansdorf, Germany
| |
Collapse
|
8
|
Zhang X, Zhang Y, Zhang S, Wang S, Yang P, Liu C. Investigate the application of postoperative ctDNA-based molecular residual disease detection in monitoring tumor recurrence in patients with non-small cell lung cancer--A retrospective study of ctDNA. Front Oncol 2023; 13:1098128. [PMID: 37091156 PMCID: PMC10115944 DOI: 10.3389/fonc.2023.1098128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/20/2023] [Indexed: 04/25/2023] Open
Abstract
Purpose To evaluate whether postoperative circulating tumor DNA (ctDNA) in plasma of patients with non-small cell lung cancer (NSCLC) can be used as a biomarker for early detection of molecular residual disease (MRD) and prediction of postoperative recurrence. Methods This study subjects were evaluated patients with surgical resected non-small cell lung cancer. All eligible patients underwent radical surgery operation followed by adjuvant therapy. Tumor tissue samples collected during operation were used to detect tumor mutation genes, and blood samples collected from peripheral veins after operation were used to collect ctDNA. Molecular residue disease (MRD) positive was defined as at least 1 true shared mutation identified in both the tumor sample and a plasma sample from the same patient was. Results Positive postoperatively ctDNA was associated with lower recurrence-free survival (RFS).The presence of MRD was a strong predictor of disease recurrence. The relative contribution of ctDNA-based MRD to the prediction of RFS is higher than all other clinicopathological variables, even higher than traditional TNM staging. In addition, MRD-positive patients who received adjuvant therapy had improved RFS compared to those who did not, the RFS of MRD-negative patients receiving adjuvant therapy was lower than that of patients not receiving adjuvant therapy. Conclusions Post-operative ctDNA analysis is an effective method for recurrence risk stratification of NSCLC, which is beneficial to the management of patients with NSCLC.
Collapse
Affiliation(s)
- Xuefei Zhang
- Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Youguo Zhang
- Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shanli Zhang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Sha Wang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Peng Yang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Changhong Liu
- Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
- *Correspondence: Changhong Liu,
| |
Collapse
|
9
|
Samarth N, Gulhane P, Singh S. Immunoregulatory framework and the role of miRNA in the pathogenesis of NSCLC - A systematic review. Front Oncol 2022; 12:1089320. [PMID: 36620544 PMCID: PMC9811680 DOI: 10.3389/fonc.2022.1089320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
With a 5-year survival rate of only 15%, non-small cell lung cancer (NSCLC), the most common kind of lung carcinoma and the cause of millions of deaths annually, has drawn attention. Numerous variables, such as disrupted signaling caused by somatic mutations in the EGFR-mediated RAS/RAF/MAPK, PI3K/AKT, JAK/STAT signaling cascade, supports tumour survival in one way or another. Here, the tumour microenvironment significantly contributes to the development of cancer by thwarting the immune response. MicroRNAs (miRNAs) are critical regulators of gene expression that can function as oncogenes or oncosuppressors. They have a major influence on the occurrence and prognosis of NSCLC. Though, a myriad number of therapies are available and many are being clinically tested, still the drug resistance, its adverse effect and toxicity leading towards fatality cannot be ruled out. In this review, we tried to ascertain the missing links in between perturbed EGFR signaling, miRNAs favouring tumorigenesis and the autophagy mechanism. While connecting all the aforementioned points multiple associations were set, which can be targeted in order to combat NSCLC. Here, we tried illuminating designing synthetically engineered circuits with the toggle switches that might lay a prototype for better therapeutic paradigm.
Collapse
Affiliation(s)
| | | | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, India
| |
Collapse
|
10
|
Cicin I, Martin C, Haddad CK, Kim SW, Smolin A, Abdillah A, Yang X. ALK TKI therapy in patients with ALK-positive non-small cell lung cancer and brain metastases: A review of the literature and local experiences. Crit Rev Oncol Hematol 2022; 180:103847. [DOI: 10.1016/j.critrevonc.2022.103847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/01/2022] [Accepted: 10/12/2022] [Indexed: 11/12/2022] Open
|
11
|
Xing P, Hao X, Zhang X, Li J. Efficacy and safety of brigatinib in ALK-positive non-small cell lung cancer treatment: A systematic review and meta-analysis. Front Oncol 2022; 12:920709. [PMID: 36408160 PMCID: PMC9669367 DOI: 10.3389/fonc.2022.920709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Background Brigatinib is a central nervous system-active second-generation anaplastic lymphoma kinase (ALK) inhibitor that targets a broad range of ALK rearrangements in patients with non-small cell lung cancer (NSCLC). The current study aimed to analyze the pooled effects and adverse events of brigatinib in patients with ALK-positive NSCLC. Methods The pooled estimates and 95% confidence intervals (CI) were calculated with DerSimonian-Laird method and the random effect model. Results The pooled objective response rate (ORR) and disease control rate (DCR) of brigatinib were 64% (95% CI 45%-83%) and 88% (95% CI 80%-96%), respectively. The pooled mPFS was 10.52 months (95% CI 7.66-13.37). In the subgroup analyses by treatment line, the highest mPFS was reached in first-line treatment (24.00 months, 95% CI 18.40-43.20), followed by post-crizotinib second-line treatment (mPFS=16.26 months, 95% CI 12.87-19.65), and second-line with any prior ALK tyrosine kinase inhibitors (mPFS=12.96 months, 95% CI 11.14-14.78). Among patients with any baseline brain metastases, the pooled intracranial ORR (iORR) was estimated as 54% (95% CI 35%-73%) for any treatment line, and 60% (95% CI 39%-81%) for first-line treatment. Intracranial PFS (iPFS) reached 19.26 months (95% CI 14.82-23.70) in patients with any baseline brain metastases. Creatine phosphokinase (CPK) increased (44%, 95% CI 26%-63%), diarrhea (37%, 95% CI 27%-48%), and nausea (28%, 95% CI 17%-39%) of any grade were the most common adverse events. Conclusion Brigatinib is effective in the treatment of patients with ALK-positive NSCLC, particularly showing robust intracranial PFS. Brigatinib used as first-line treatment yielded superior PFS compared with brigatinib used as other treatment lines. These results suggested a benefit of using brigatinib earlier in the patient’s management. All adverse events are manageable, with CPK increased and gastrointestinal reactions found to be the most common types. Systematic Review Registration https://inplasy.com/inplasy-2022-3-0142/, identifier (INPLASY202230141).
Collapse
|
12
|
TABBÒ F, DE FILIPPIS M, JACOBS F, NOVELLO S. Strengths and pitfalls of brigatinib in non-small cell lung cancer patients' management. Minerva Med 2022; 113:315-332. [DOI: 10.23736/s0026-4806.21.07693-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Peng L, Zhu L, Sun Y, Stebbing J, Selvaggi G, Zhang Y, Yu Z. Targeting ALK Rearrangements in NSCLC: Current State of the Art. Front Oncol 2022; 12:863461. [PMID: 35463328 PMCID: PMC9020874 DOI: 10.3389/fonc.2022.863461] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/08/2022] [Indexed: 12/25/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) alterations in non-small cell lung cancer (NSCLC) can be effectively treated with a variety of ALK-targeted drugs. After the approval of the first-generation ALK inhibitor crizotinib which achieved better results in prolonging the progression-free survival (PFS) compared with chemotherapy, a number of next-generation ALK inhibitors have been developed including ceritinib, alectinib, brigatinib, and ensartinib. Recently, a potent, third-generation ALK inhibitor, lorlatinib, has been approved by the Food and Drug Administration (FDA) for the first-line treatment of ALK-positive (ALK+) NSCLC. These drugs have manageable toxicity profiles. Responses to ALK inhibitors are however often not durable, and acquired resistance can occur as on-target or off-target alterations. Studies are underway to explore the mechanisms of resistance and optimal treatment options beyond progression. Efforts have also been undertaken to develop further generations of ALK inhibitors. This review will summarize the current situation of targeting the ALK signaling pathway.
Collapse
Affiliation(s)
- Ling Peng
- Cancer Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Liping Zhu
- Department of Medical Oncology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, China
| | - Yilan Sun
- Cancer Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Justin Stebbing
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | | | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, China
| | - Zhentao Yu
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
14
|
Stinchcombe TE, Wang X, Doebele RC, Drusbosky LM, Gerber DE, Horn L, Bertino EM, Liu G, Villaruz LC, Ross Camidge D. Short communication: The activity of brigatinib in patients with disease progression after next generation anaplastic lymphoma tyrosine kinase inhibitors and an exploratory analysis of circulating tumor DNA. Lung Cancer 2022; 165:43-48. [PMID: 35085983 DOI: 10.1016/j.lungcan.2021.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Brigatinib, a second generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI), is central nervous system (CNS) penetrant and active against anaplastic lymphoma kinase (ALK) resistance mutations. We prospectively studied the activity of brigatinib in patients with disease progression after second generation ALK TKIs. METHODS Patients with stage IIIB/IV ALK + non-small cell lung cancer (NSCLC), and progressive disease after second ALK TKIs were eligible. Cohort A enrolled patients with disease progression on any second ALK TKI, cohort B enrolled patients with disease progression after first-line therapy with alectinib, and cohort C enrolled patients who experienced disease progression on standard dose brigatinib. Brigatinib treatment was 90 mg daily for seven days and then escalated to 180 mg daily in cohorts A and B, and 240 mg daily in cohort C. The primary endpoint was objective response rate (ORR), and a 2-stage design was used. The intended enrollment was 20 patients in stage 1, and 20 patients in stage 2. RESULTS The study was closed due to slow accrual. Between March 2017 and June 2020, 32 patients received study therapy; three patients in cohort A moved to cohort C after initial progression for a total of 35 study subjects. Of the 32 patients, 16 (50%) were male, the median age was 55 years (range 32-76), and patients received a median number of 2 prior ALK TKI's (range 1-3). Cohort A enrolled 27 patients, cohort B enrolled four patients, and cohort C enrolled four patients. The ORR in cohorts A, B, and C was 33% (95% confidence interval (CI: 16% to 54%), 25% (95% CI: 0.63% to 81%), and 0%, respectively. CONCLUSION Brigatinib has activity in ALK positive NSCLC patients with disease progression after second generation ALK TKIs.
Collapse
Affiliation(s)
| | - Xiaofei Wang
- Duke University, Department of Biostatistics and Bioinformatics, Durham, NC, USA
| | | | | | - David E Gerber
- Harold C. Simmons Comprehensive Cancer Center University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Leora Horn
- Vanderbilt-Ingram Cancer Center, Nashville, TEN, USA
| | - Erin M Bertino
- The Ohio State University, Division of Medical Oncology, Columbus, OH, USA
| | - Geoff Liu
- Division of Medical Oncology, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada
| | - Liza C Villaruz
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, United States
| | | |
Collapse
|
15
|
Rijavec E, Biello F, Indini A, Grossi F, Genova C. Current Insights on the Treatment of Anaplastic Lymphoma Kinase-Positive Metastatic Non-Small Cell Lung Cancer: Focus on Brigatinib. Clin Pharmacol 2022; 14:1-9. [PMID: 35082536 PMCID: PMC8786362 DOI: 10.2147/cpaa.s284850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/14/2022] [Indexed: 11/26/2022] Open
Abstract
Rearrangement of anaplastic lymphoma kinase (ALK) gene is detected in approximately 5% of non-small cell lung cancer (NSCLC) patients. Tyrosine kinase inhibitors targeting ALK have significantly improved the prognosis of these patients. However, most patients experienced disease progression within a few years due to acquired resistance. Brigatinib is a second-generation ALK inhibitor effective in presence of several ALK mutations with demonstrated activity against central nervous system metastases. Currently, brigatinib is approved to treat ALK-positive metastatic NSCLC patients not previously treated with ALK inhibitors and patients who have progressed on or are intolerant to crizotinib. In this review, we provide a summary of results from clinical trials involving brigatinib, and we discuss its possible role in the management of ALK-positive NSCLC in the following years.
Collapse
Affiliation(s)
- Erika Rijavec
- Medical Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
- Correspondence: Erika Rijavec, Email
| | - Federica Biello
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Alice Indini
- Division of Medical Oncology, University of Insubria, ASST dei Sette Laghi, Varese, Italy
| | - Francesco Grossi
- Division of Medical Oncology, University of Insubria, ASST dei Sette Laghi, Varese, Italy
| | - Carlo Genova
- UO Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), Università degli Studi di Genova, Genova, Italy
| |
Collapse
|
16
|
Wang Y, Wang T, Xue J, Jia Z, Liu X, Li B, Li J, Li X, Wang W, Bing Z, Cao L, Cao Z, Liang N. Fatal Tumour Lysis Syndrome Induced by Brigatinib in a Lung Adenocarcinoma Patient Treated With Sequential ALK Inhibitors: A Case Report. Front Pharmacol 2021; 12:809467. [PMID: 34987411 PMCID: PMC8721166 DOI: 10.3389/fphar.2021.809467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022] Open
Abstract
Tumour lysis syndrome (TLS) represents a group of fatal metabolic derangements resulting from the rapid breakdown of tumour cells. TLS typically occurs soon after the administration of chemotherapy in haematologic malignancies but is rarely observed in solid tumours. Here, we report a case of brigatinib-induced TLS after treatment with sequential anaplastic lymphoma kinase (ALK) inhibitors in a patient with advanced ALK-rearranged lung adenocarcinoma. The patient was treated sequentially with crizotinib, alectinib, and ensartinib. High-throughput molecular profiling after disease progression indicated that brigatinib may overcome ALK resistance mutations, so the patient was administered brigatinib as the fourth-line treatment. After 22 days of therapy, he developed oliguria, fever, and progressive dyspnoea. Clinical manifestations and laboratory findings met the diagnostic criteria for TLS. The significant decrease in the abundance of ALK mutations in plasma indicated a therapeutic response at the molecular level. Consequently, the diagnosis of brigatinib-induced TLS was established. To the best of our knowledge, this is the first case of TLS induced by sequential targeted therapy in non-small cell lung cancer. With the extensive application of sequential therapy with more potent next-generation targeted therapeutic drugs, special attention should be given to this rare but severe complication.
Collapse
Affiliation(s)
- Yadong Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tiange Wang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Laser Aesthetic Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianchao Xue
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziqi Jia
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year MD Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year MD Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bowen Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji Li
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoguang Li
- Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Weiwei Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhongxing Bing
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Cao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhili Cao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Naixin Liang,
| |
Collapse
|
17
|
Li Z, Liu F, Wu S, Ding S, Chen Y, Liu J. Research progress on the drug resistance of ALK kinase inhibitors. Curr Med Chem 2021; 29:2456-2475. [PMID: 34365942 DOI: 10.2174/0929867328666210806120347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The fusion and rearrangement of the ALK gene of anaplastic lymphoma kinase is an important cause of a variety of cancers, including non-small cell lung cancer (NSCLC) and anaplastic large cell lymphoma (ALCL). Since crizotinib first came out, many ALK inhibitors have come out one after another, but the fatal flaw in each generation of ALK inhibitors is the body's resistance to drugs. Therefore, how to solve the problem of drug resistance has become an important bottleneck in the application and development of ALK inhibitors. This article briefly introduces the drug resistance of ALK inhibitors and the modified forms of ALK inhibitors, which provide a theoretical basis for solving the drug resistance of ALK inhibitors and the development of a new generation of ALK kinase inhibitors. METHOD We use relevant databases to query relevant literature, and then screen and select based on the relevance and cutting edge of the content. We then summarize and analyze appropriate articles, integrate and classify relevant studies, and finally write articles based on topics. RESULT This article starts with the problem of ALK resistance, first introduces the composition of ALK kinase, and then introduces the problem of resistance of ALK kinase inhibitors. Later, the structural modification to overcome ALK resistance was introduced, and finally, the method to overcome ALK resistance was introduced. CONCLUSION This article summarizes the resistance pathways of ALK kinase inhibitors, and integrates the efforts made to overcome the structural modification of ALK resistance problems, and hopes to provide some inspiration for the development of the next generation of ALK kinase inhibitors.
Collapse
Affiliation(s)
- Zhen Li
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 10036. China
| | - Fang Liu
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 10036. China
| | - Shuang Wu
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 10036. China
| | - Shi Ding
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 10036. China
| | - Ye Chen
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 10036. China
| | - Ju Liu
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 10036. China
| |
Collapse
|
18
|
Matsumura Y, Inomata S, Yamaguchi H, Mine H, Takagi H, Watanabe M, Ozaki Y, Yamaura T, Fukuhara M, Muto S, Okabe N, Hasegawa T, Shio Y, Suzuki H. A patient with ALK-positive lung adenocarcinoma who survived alectinib-refractory postoperative recurrence for 4 years by switching to ceritinib. Thorac Cancer 2021; 12:2225-2228. [PMID: 34159737 PMCID: PMC8327688 DOI: 10.1111/1759-7714.14058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/26/2022] Open
Abstract
Echinoderm microtubule‐associated protein‐like 4‐anaplastic lymphoma kinase (EML4‐ALK) rearrangements are found in ~ 5% of patients with non‐small cell lung cancer (NSCLC). Several tyrosine kinase inhibitors (TKIs) have been developed for treatment of so‐called ALK‐positive NSCLC. In cases of tumor progression during treatment with second‐generation ALK‐TKIs, such as alectinib, brigatinib, or ceritinib, National Comprehensive Cancer Network guidelines propose a switch to lorlatinib, a third‐generation ALK‐TKI, or to cytotoxic chemotherapy. However, they do not mention switching to other second‐generation ALK‐TKIs. Here, we present a rare case of a 53‐year‐old Japanese woman, who had never smoked, with ALK‐positive lung adenocarcinoma who survived alectinib‐resistant postoperative recurrence for 4 years by switching to ceritinib. She underwent curative resection for lung adenocarcinoma, but the cancer recurred at the bronchial stump and mediastinal lymph nodes. After platinum‐doublet chemotherapy, the patient still had a single growing liver metastasis, but the tumor was found to harbor EML4‐ALK rearrangement. Therefore, the patient started to take ALK‐TKIs. Alectinib was the second ALK‐TKI used to treat this patient. Alectinib shrank the liver metastasis, which was surgically resected. The tumor relapsed again during continued treatment with alectinib, which was switched to ceritinib. Ceritinib was effective for the relapsed tumor and treatment continued well for 4 years. This case report suggests that, in case of tumor progression during treatment with a second‐generation ALK‐TKI, switching to another second‐generation ALK‐TKI may be one of the treatment options. Further analyses are warranted to find robust markers to determine which ALK‐TKI is best for each patient.
Collapse
Affiliation(s)
- Yuki Matsumura
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Sho Inomata
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Hikaru Yamaguchi
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Hayato Mine
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Hironori Takagi
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Masayuki Watanabe
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Yuki Ozaki
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Takumi Yamaura
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Mitsuro Fukuhara
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Satoshi Muto
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Naoyuki Okabe
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Takeo Hasegawa
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Yutaka Shio
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Hiroyuki Suzuki
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
19
|
Camidge DR. Lorlatinib Should Not be Considered as the Preferred First-Line Option in Patients With Advanced ALK Rearranged NSCLC. J Thorac Oncol 2021; 16:528-531. [DOI: 10.1016/j.jtho.2020.12.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 12/19/2020] [Indexed: 10/21/2022]
|
20
|
Stinchcombe TE. Lorlatinib in the treatment of anaplastic lymphoma kinase-positive non-small-cell lung cancer. Ann Oncol 2021; 32:587-589. [PMID: 33741444 DOI: 10.1016/j.annonc.2021.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- T E Stinchcombe
- Division of Medical Oncology, Duke Cancer Institute, Durham, USA.
| |
Collapse
|