1
|
Köse K, Tüysüz M, Aksüt D, Uzun L. Modification of cyclodextrin and use in environmental applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:182-209. [PMID: 34212318 DOI: 10.1007/s11356-021-15005-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/14/2021] [Indexed: 05/27/2023]
Abstract
Water pollution, which has become a global problem in parallel with environmental pollution, is a problem that needs to be solved urgently, considering the gradual depletion of water resources. The inadequacy of the water treatment methods and the materials used somehow directed the researchers to look for dual character structures such as biocompatible and biodegradable β-cyclodextrin (β-CD). β-CD, which is normally insoluble in water, is used in demanding wastewater applications by being modified with the help of different agents to be water soluble or transformed into polymeric adsorbents as a result of co-polymerization via cross-linkers. In this way, in addition to the host-guest interactions offered by β-CD, secondary forces arising from these interactions provide advantages in terms of regeneration and reusability. However, the adsorption efficiency and synthesis steps need to be improved. Based on the current studies presented in this review, in which cross-linkers and modification methods are also mentioned, suggestions for novel synthesis methods of new-generation β-CD-based materials, criticisms, and recent methods of removal of micropollutants such as heavy metals, industrial dyes, harmful biomolecules, and pharmaceutics wastes are mentioned.
Collapse
Affiliation(s)
- Kazım Köse
- Department of Joint Courses, Hitit University, 19040, Çorum, Turkey.
| | - Miraç Tüysüz
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Davut Aksüt
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Lokman Uzun
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
Mongioví C, Morin-Crini N, Lacalamita D, Bradu C, Raschetti M, Placet V, Ribeiro ARL, Ivanovska A, Kostić M, Crini G. Biosorbents from Plant Fibers of Hemp and Flax for Metal Removal: Comparison of Their Biosorption Properties. Molecules 2021; 26:4199. [PMID: 34299474 PMCID: PMC8303383 DOI: 10.3390/molecules26144199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 11/24/2022] Open
Abstract
Lignocellulosic fibers extracted from plants are considered an interesting raw material for environmentally friendly products with multiple applications. This work investigated the feasibility of using hemp- and flax-based materials in the form of felts as biosorbents for the removal of metals present in aqueous solutions. Biosorption of Al, Cd, Co, Cu, Mn, Ni and Zn from a single solution by the two lignocellulosic-based felts was examined using a batch mode. The parameters studied were initial metal concentration, adsorbent dosage, contact time, and pH. In controlled conditions, the results showed that: (i) the flax-based felt had higher biosorption capacities with respect to the metals studied than the hemp-based felt; (ii) the highest removal efficiency was always obtained for Cu ions, and the following order of Cu > Cd > Zn > Ni > Co > Al > Mn was found for both examined biosorbents; (iii) the process was rapid and 10 min were sufficient to attain the equilibrium; (iv) the efficiency improved with the increase of the adsorbent dosage; and (v) the biosorption capacities were independent of pH between 4 and 6. Based on the obtained results, it can be considered that plant-based felts are new, efficient materials for metal removal.
Collapse
Affiliation(s)
- Chiara Mongioví
- Laboratoire Chrono-Environnement, Faculté des Sciences & Techniques, UMR 6249, Université Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France; (C.M.); (N.M.-C.); (D.L.)
| | - Nadia Morin-Crini
- Laboratoire Chrono-Environnement, Faculté des Sciences & Techniques, UMR 6249, Université Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France; (C.M.); (N.M.-C.); (D.L.)
| | - Dario Lacalamita
- Laboratoire Chrono-Environnement, Faculté des Sciences & Techniques, UMR 6249, Université Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France; (C.M.); (N.M.-C.); (D.L.)
| | - Corina Bradu
- PROTMED Research Centre, Department of Systems Ecology and Sustainability, University of Bucharest, Spl. Independentei 91–95, 050095 Bucharest, Romania;
| | - Marina Raschetti
- FEMTO-ST, CNRS/UFC/ENSMM/UTBM, Department of Applied Mechanics, Université Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France; (M.R.); (V.P.)
| | - Vincent Placet
- FEMTO-ST, CNRS/UFC/ENSMM/UTBM, Department of Applied Mechanics, Université Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France; (M.R.); (V.P.)
| | - Ana Rita Lado Ribeiro
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal;
| | - Aleksandra Ivanovska
- Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Mirjana Kostić
- Department of Textile Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Grégorio Crini
- Laboratoire Chrono-Environnement, Faculté des Sciences & Techniques, UMR 6249, Université Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France; (C.M.); (N.M.-C.); (D.L.)
| |
Collapse
|
3
|
Adsorption Studies of Waterborne Trihalomethanes Using Modified Polysaccharide Adsorbents. Molecules 2021; 26:molecules26051431. [PMID: 33800798 PMCID: PMC7961458 DOI: 10.3390/molecules26051431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/04/2022] Open
Abstract
The adsorptive removal of trihalomethanes (THMs) from spiked water samples was evaluated with a series of modified polysaccharide adsorbents that contain β-cylodextrin or chitosan. The uptake properties of these biodegradable polymer adsorbents were evaluated with a mixture of THMs in aqueous solution. Gas chromatography employing a direct aqueous injection (DAI) method with electrolytic conductivity detection enabled quantification of THMs in water at 295 K and at pH 6.5. The adsorption isotherms for the polymer-THMs was evaluated using the Sips model, where the monolayer adsorption capacities ranged between 0.04 and 1.07 mmol THMs/g for respective component THMs. Unique adsorption characteristics were observed that vary according to the polymer structure, composition, and surface chemical properties. The modified polysaccharide adsorbents display variable molecular recognition and selectivity toward component THMs in the mixed systems according to the molecular size and polarizability of the adsorbates.
Collapse
|
4
|
Zewde AA, Li Z, Zhang L, Odey EA, Xiaoqin Z. Utilisation of appropriately treated wastewater for some further beneficial purposes: a review of the disinfection method of treated wastewater using UV radiation technology. REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:139-146. [PMID: 31743106 DOI: 10.1515/reveh-2019-0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Due to world population growth, global climate change and the deteriorated quality of water, water supply struggles to keep up the clean water demand to meet human needs. Ultraviolet (UV) technology holds a great potential in advancing water and wastewater treatment to improve the efficiency of safe treatment. Over the last 20 years, the UV light disinfection industry has shown a tremendous growth. Therefore, reuse of wastewater contributes significantly to an efficient and sustainable water usage. Disinfection is a requirement for wastewater reuse due to the presence of a swarm of pathogens (e.g. bacteria, viruses, worms and protozoa) in secondary effluents. UV technology is widely favoured due to its environmentally friendly, chemical-free ability to provide high-log reductions of all known microorganisms, including chlorine-resistant strains such as Cryptosporidium. The UV disinfection process does not create disinfection by-products and unlike the chlorine UV disinfection process, it is not reliant on water temperature and pH. UV disinfection can eliminate the need to generate, handle, transport or store toxic/hazardous or corrosive chemicals and requires less space than other methods. As UV does not leave any residual effect that can be harmful to humans or aquatic life, it is safer for plant operators.
Collapse
Affiliation(s)
- Abraham Amenay Zewde
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan 30, Beijing 10003, P.R. China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, P.R. China
| | - Lingling Zhang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, P.R. China
| | - Emanuel Alepu Odey
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, P.R. China
| | - Zhou Xiaoqin
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, P.R. China
| |
Collapse
|
5
|
Morin‐Crini N, Staelens J, Loiacono S, Martel B, Chanet G, Crini G. Simultaneous removal of Cd, Co, Cu, Mn, Ni, and Zn from synthetic solutions on a hemp‐based felt. III. Real discharge waters. J Appl Polym Sci 2020. [DOI: 10.1002/app.48823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nadia Morin‐Crini
- UMR 6249 Chrono‐EnvironnementUniversité Bourgogne Franche‐Comté, 16 Route de Gray Besançon 25000 France
| | - Jean‐Noël Staelens
- UMET UMR 8207, Ingénierie des Systèmes PolymèresUniversité de Lille Villeneuve d'Ascq 59655 France
| | - Sonia Loiacono
- UMR 6249 Chrono‐EnvironnementUniversité Bourgogne Franche‐Comté, 16 Route de Gray Besançon 25000 France
| | - Bernard Martel
- UMET UMR 8207, Ingénierie des Systèmes PolymèresUniversité de Lille Villeneuve d'Ascq 59655 France
| | - Gilles Chanet
- Eurochanvre, 7 Route de Dijon Arc‐les‐Gray 70100 France
| | - Grégorio Crini
- UMR 6249 Chrono‐EnvironnementUniversité Bourgogne Franche‐Comté, 16 Route de Gray Besançon 25000 France
| |
Collapse
|
6
|
Gao W, Du L, Jiao W, Liu Y. Oxidation of benzyl alcohols to ketones and aldehydes by O3 process enhanced using high-gravity technology. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Fenyvesi É, Barkács K, Gruiz K, Varga E, Kenyeres I, Záray G, Szente L. Removal of hazardous micropollutants from treated wastewater using cyclodextrin bead polymer - A pilot demonstration case. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121181. [PMID: 31541954 DOI: 10.1016/j.jhazmat.2019.121181] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Increasing amount of micropollutants such as drugs, cosmetics and nutritional supplements detected in surface waters represents increasing risk to humans and to the whole environment. These hazardous materials deriving mostly from wastewaters often cannot be effectively removed by conventional water treatment technologies due to their persistence. Some of the innovative technologies use specific sorbents for their removal. Cyclodextrin-based sorbents have already proved to be efficient in laboratory-scale experiments, but no pilot-plant scale demonstration has been performed so far. We are the first who applied this sorption-technology as a tertiary treatment in a pilot-plant scale operating, biomachine-type municipal wastewater treatment plant. As a result of the treatment 7 of 9 typical micropollutants (estradiol, ethinyl estradiol, estriol, diclofenac, ibuprofen, bisphenol A and cholesterol) were removed with >80% efficiency from effluent (reducing their concentration from ∼5 μg/L to <0.001-1 μg/L). GC-MS analysis of water samples showed that many of the micropollutants were removed from the water within a short time, demonstrating the high potential of the applied cyclodextrin-based sorbent in micropollutant removal. The effect-based testing also confirmed the efficiency. There was a correlation between sorption efficacies and binding constants of micropollutant/cyclodextrin inclusion complexes, showing that among others also inclusion complex formation of pollutants with cyclodextrin played important role in sorption mechanism.
Collapse
Affiliation(s)
- Éva Fenyvesi
- CycloLab Cyclodextrin R&D Laboratory Ltd., Budapest, Hungary.
| | - Katalin Barkács
- Cooperation Research Center of Environmental Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Katalin Gruiz
- Budapest University of Technology and Economics, Budapest, Hungary
| | - Erzsébet Varga
- CycloLab Cyclodextrin R&D Laboratory Ltd., Budapest, Hungary
| | | | - Gyula Záray
- Cooperation Research Center of Environmental Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R&D Laboratory Ltd., Budapest, Hungary
| |
Collapse
|
8
|
Gao W, Song Y, Jiao W, Liu Y. A catalyst-free and highly efficient approach to ozonation of benzyl alcohol to benzoic acid in a rotating packed bed. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Qiao J, Luo S, Yang P, Jiao W, Liu Y. Degradation of Nitrobenzene-containing wastewater by ozone/persulfate oxidation process in a rotating packed bed. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Yang P, Luo S, Liu H, Jiao W, Liu Y. Aqueous ozone decomposition kinetics in a rotating packed bed. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.10.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Morin-Crini N, Winterton P, Fourmentin S, Wilson LD, Fenyvesi É, Crini G. Water-insoluble β-cyclodextrin–epichlorohydrin polymers for removal of pollutants from aqueous solutions by sorption processes using batch studies: A review of inclusion mechanisms. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.07.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Ayanda OS, Olutona GO, Olumayede EG, Akintayo CO, Ximba BJ. Phenols, flame retardants and phthalates in water and wastewater - a global problem. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 74:1025-1038. [PMID: 27642822 DOI: 10.2166/wst.2016.314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Organic pollutants in water and wastewater have been causing serious environmental problems. The arbitrary discharge of wastewater by industries, and handling, use, and disposal constitute a means by which phenols, flame retardants (FRs), phthalates (PAEs) and other toxic organic pollutants enter the ecosystem. Moreover, these organic pollutants are not completely removed during treatment processes and might be degraded into highly toxic derivatives, which has led to their occurrence in the environment. Phenols, FRs and PAEs are thus highly toxic, carcinogenic and mutagenic, and are capable of disrupting the endocrine system. Therefore, investigation to understand the sources, pathways, behavior, toxicity and exposure to phenols, FRs and PAEs in the environment is necessary. Formation of different by-products makes it difficult to compare the efficacy of the treatment processes, most especially when other organic matters are present. Hence, high levels of phenols, FRs and PAEs removal could be attained with in-line combined treatment processes.
Collapse
Affiliation(s)
- Olushola Sunday Ayanda
- Environmental and Nanoscience Research Group, Department of Industrial Chemistry, Federal University OyeEkiti, P.M.B. 373, Oye-Ekiti, Ekiti State, Nigeria E-mail:
| | - Godwin Oladele Olutona
- Department of Chemistry and Industrial Chemistry, Bowen University, Iwo, Osun State, Nigeria
| | - Emmanuel G Olumayede
- Environmental and Nanoscience Research Group, Department of Industrial Chemistry, Federal University OyeEkiti, P.M.B. 373, Oye-Ekiti, Ekiti State, Nigeria E-mail:
| | - Cecilia O Akintayo
- Environmental and Nanoscience Research Group, Department of Industrial Chemistry, Federal University OyeEkiti, P.M.B. 373, Oye-Ekiti, Ekiti State, Nigeria E-mail:
| | - Bhekumusa J Ximba
- Department of Chemistry, Cape Peninsula University of Technology, P.O. Box 962, Cape Town, South Africa
| |
Collapse
|
13
|
Khataee AR, Pakdehi SG. Removal of sodium azide from aqueous solution by Fenton-like process using natural laterite as a heterogeneous catalyst: Kinetic modeling based on nonlinear regression analysis. J Taiwan Inst Chem Eng 2014. [DOI: 10.1016/j.jtice.2014.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|