1
|
Guan X, Ding Y, Lai S, Yang X, Wei J, Zhang J, Zhang L, Wang K, Tong J, Li C. Nonconjugated fluorescent polymer nanoparticles by self-assembly of PIMA-g-β-CD for live-cell long-term tracking. Carbohydr Polym 2022; 291:119633. [DOI: 10.1016/j.carbpol.2022.119633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/24/2022]
|
2
|
Zalmi GA, Jadhav RW, Mirgane HA, Bhosale SV. Recent Advances in Aggregation-Induced Emission Active Materials for Sensing of Biologically Important Molecules and Drug Delivery System. Molecules 2021; 27:150. [PMID: 35011382 PMCID: PMC8746362 DOI: 10.3390/molecules27010150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
The emergence and development of aggregation induced emission (AIE) have attracted worldwide attention due to its unique photophysical phenomenon and for removing the obstacle of aggregation-caused quenching (ACQ) which is the most detrimental process thereby making AIE an important and promising aspect in various fields of fluorescent material, sensing, bioimaging, optoelectronics, drug delivery system, and theranostics. In this review, we have discussed insights and explored recent advances that are being made in AIE active materials and their application in sensing, biological cell imaging, and drug delivery systems, and, furthermore, we explored AIE active fluorescent material as a building block in supramolecular chemistry. Herein, we focus on various AIE active molecules such as tetraphenylethylene, AIE-active polymer, quantum dots, AIE active metal-organic framework and triphenylamine, not only in terms of their synthetic routes but also we outline their applications. Finally, we summarize our view of the construction and application of AIE-active molecules, which thus inspiring young researchers to explore new ideas, innovations, and develop the field of supramolecular chemistry in years to come.
Collapse
Affiliation(s)
| | | | | | - Sheshanath V. Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau 403206, India; (G.A.Z.); (R.W.J.); (H.A.M.)
| |
Collapse
|
3
|
Siafaka PI, Okur NÜ, Karantas ID, Okur ME, Gündoğdu EA. Current update on nanoplatforms as therapeutic and diagnostic tools: A review for the materials used as nanotheranostics and imaging modalities. Asian J Pharm Sci 2021; 16:24-46. [PMID: 33613728 PMCID: PMC7878458 DOI: 10.1016/j.ajps.2020.03.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/21/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
In the last decade, the use of nanotheranostics as emerging diagnostic and therapeutic tools for various diseases, especially cancer, is held great attention. Up to date, several approaches have been employed in order to develop smart nanotheranostics, which combine bioactive targeting on specific tissues as well as diagnostic properties. The nanotheranostics can deliver therapeutic agents by concomitantly monitor the therapy response in real-time. Consequently, the possibility of over- or under-dosing is decreased. Various non-invasive imaging techniques have been used to quantitatively monitor the drug delivery processes. Radiolabeling of nanomaterials is widely used as powerful diagnostic approach on nuclear medicine imaging. In fact, various radiolabeled nanomaterials have been designed and developed for imaging tumors and other lesions due to their efficient characteristics. Inorganic nanoparticles as gold, silver, silica based nanomaterials or organic nanoparticles as polymers, carbon based nanomaterials, liposomes have been reported as multifunctional nanotheranostics. In this review, the imaging modalities according to their use in various diseases are summarized, providing special details for radiolabeling. In further, the most current nanotheranostics categorized via the used nanomaterials are also summed up. To conclude, this review can be beneficial for medical and pharmaceutical society as well as material scientists who work in the field of nanotheranostics since they can use this research as guide for producing newer and more efficient nanotheranostics.
Collapse
Affiliation(s)
- Panoraia I. Siafaka
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Neslihan Üstündağ Okur
- Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Health Sciences, Istanbul, Turkey
| | - Ioannis D. Karantas
- 2nd Clinic of Internal Medicine, Hippokration General Hospital, Thessaloniki, Greece
| | - Mehmet Evren Okur
- Faculty of Pharmacy, Department of Pharmacology, University of Health Sciences, Istanbul, Turkey
| | | |
Collapse
|
4
|
Wang Y, Nie J, Fang W, Yang L, Hu Q, Wang Z, Sun JZ, Tang BZ. Sugar-Based Aggregation-Induced Emission Luminogens: Design, Structures, and Applications. Chem Rev 2020; 120:4534-4577. [DOI: 10.1021/acs.chemrev.9b00814] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yijia Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jingyi Nie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Wen Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Ling Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Qiaoling Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| |
Collapse
|
5
|
Lu X, Chen J, Guo Z, Zheng Y, Rea MC, Su H, Zheng X, Zheng B, Miao S. Using polysaccharides for the enhancement of functionality of foods: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Huang H, Liu M, Jiang R, Chen J, Huang Q, Wen Y, Tian J, Zhou N, Zhang X, Wei Y. Water-dispersible fluorescent nanodiamonds for biological imaging prepared by thiol-ene click chemistry. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.08.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Mao LC, Zhang XY, Wei Y. Recent Advances and Progress for the Fabrication and Surface Modification of AIE-active Organic-inorganic Luminescent Composites. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2208-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Taghipour S, Hosseini SM, Ataie-Ashtiani B. Engineering nanomaterials for water and wastewater treatment: review of classifications, properties and applications. NEW J CHEM 2019. [DOI: 10.1039/c9nj00157c] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on their characteristics and applicability, a new category of NMs is proposed for water and wastewater treatment.
Collapse
Affiliation(s)
- Shabnam Taghipour
- Department of Civil Engineering
- Sharif University of Technology
- Tehran
- Iran
| | | | - Behzad Ataie-Ashtiani
- Department of Civil Engineering
- Sharif University of Technology
- Tehran
- Iran
- National Centre for Groundwater Research & Training and College of Science & Engineering
| |
Collapse
|
9
|
Yang L, Wu X, Luo L, Liu Y, Wang F. Facile preparation of graphitic-C3N4 quantum dots for application in two-photon imaging. NEW J CHEM 2019. [DOI: 10.1039/c8nj05740k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A novel one-step method for the preparation of g-C3N4 QDs for effective two-photon imaging.
Collapse
Affiliation(s)
- Lingyan Yang
- Laboratory of Environmental Sciences and Technology
- Xinjiang Technical Institute of Physics & Chemistry
- Chinese Academy of Sciences
- Urumqi
- China
| | - Xiaoxia Wu
- Laboratory of Environmental Sciences and Technology
- Xinjiang Technical Institute of Physics & Chemistry
- Chinese Academy of Sciences
- Urumqi
- China
| | - Liang Luo
- Grirem advanced materials Co., Ltd
- 100000 Beijing
- China
| | - Yong Liu
- Department of Radiation Oncology
- Shanghai General Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 201620
- China
| | - Fu Wang
- Laboratory of Environmental Sciences and Technology
- Xinjiang Technical Institute of Physics & Chemistry
- Chinese Academy of Sciences
- Urumqi
- China
| |
Collapse
|
10
|
De-La-Cuesta J, Pomposo JA. Photoactivation of Aggregation-Induced Emission Molecules for Fast and Efficient Synthesis of Highly Fluorescent Single-Chain Nanoparticles. ACS OMEGA 2018; 3:15193-15199. [PMID: 30555999 PMCID: PMC6289576 DOI: 10.1021/acsomega.8b02374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/29/2018] [Indexed: 06/09/2023]
Abstract
Single-chain nanoparticles (SCNPs) are ultrasmall soft nanomaterials constructed via intrachain cross-linking of individual precursor polymer chains, with promising prospects for nanomedicine, catalysis, and sensing, among other different fields. SCNPs are versatile building blocks for the construction of new fluorescent probes with ultrasmall size, higher brightness, and better photostability than previous particle-based systems. Herein, we report on a new, fast, and efficient method to produce SCNPs with intense fluorescence emission in solution which is based on the photoactivation of appropriate aggregation-induced emission (AIE) cross-linking molecules containing azide functional groups. Remarkably, the presence of the azide moiety-that can be transformed to highly reactive nitrene species upon UV irradiation-was found to be essential for the SCNPs to display intense fluorescence emission. We attribute the fluorescence properties of the SCNPs to the immobilization of the initially nonfluorescent AIE molecules via intrachain cross-linking upon photoactivation. Such cross-linking-induced immobilization process activates the AIE mechanism and, hence, leads to fluorescent SCNPs in both solution and solid state.
Collapse
Affiliation(s)
- Julen De-La-Cuesta
- Centro
de Física de Materiales (CSIC, UPV/EHU) and Materials Physics
Center MPC, Paseo Manuel
de Lardizabal 5, E-20018 San Sebastián, Spain
| | - José A. Pomposo
- Centro
de Física de Materiales (CSIC, UPV/EHU) and Materials Physics
Center MPC, Paseo Manuel
de Lardizabal 5, E-20018 San Sebastián, Spain
- Departamento
de Física de Materiales, Universidad
del País Vasco (UPV/EHU), Apartado 1072, E-20800 San Sebastián, Spain
- IKERBASQUE—Basque
Foundation for Science, María Díaz de Haro 3, E-48013 Bilbao, Spain
| |
Collapse
|
11
|
Huang H, Liu M, Chen J, Mao L, Zeng G, Wen Y, Tian J, Zhou N, Zhang X, Wei Y. Facile fabrication of carboxyl groups modified fluorescent C 60 through a one-step thiol-ene click reaction and their potential applications for biological imaging and intracellular drug delivery. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Huang L, Luo W, Liu M, Tian J, Huang Q, Huang H, Hui J, Wen Y, Zhang X, Wei Y. Facile preparation of Eu3+ and F− co-doped luminescent hydroxyapatite polymer composites via the photo-RAFT polymerization. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2017.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|