Lin TH, Chang YH, Hsieh TH, Huang YC, Wu MC. Electrospun SnO
2/WO
3 Heterostructure Nanocomposite Fiber for Enhanced Acetone Vapor Detection.
Polymers (Basel) 2023;
15:4318. [PMID:
37959998 PMCID:
PMC10647394 DOI:
10.3390/polym15214318]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Volatile organic compounds (VOCs), often invisible but potentially harmful, are prevalent in industrial and laboratory settings, posing health risks. Detecting VOCs in real-time with high sensitivity and low detection limits is crucial for human health and safety. The optical sensor, utilizing the gasochromic properties of sensing materials, offers a promising way of achieving rapid responses in ambient environments. In this study, we investigated the heterostructure of SnO2/WO3 nanoparticles and employed it as the primary detection component. Using the electrospinning technique, we fabricated a sensing fiber containing Ag NPs, poly(methyl methacrylate) (PMMA), and SnO2/WO3 (PMMA-Ag-SnO2/WO3) for acetone vapor detection. Following activation via UV/ozone treatment, we observed charge migration between WO3 and SnO2, resulting in a substantial generation of superoxide radicals on SnO2 nanoparticles. This phenomenon facilitates structural deformation of the fiber and alters the oxidation state of tungsten ions, ultimately leading to a significant change in extinction when exposed to acetone vapor. As a result, PMMA-Ag-SnO2/WO3 fiber achieves a detection limit of 100 ppm and a response time of 1.0 min for acetone detection. These findings represent an advancement in the development of sensitive and selective VOC sensing devices.
Collapse