1
|
Corredor LM, Escobar S, Cifuentes J, Llanos S, Quintero HI, Colmenares K, Espinosa C, Delgadillo CL, Romero Bohórquez AR, Manrique E. Effect of a SILICA/HPAM Nanohybrid on Heavy Oil Recovery and Treatment: Experimental and Simulation Study. ACS OMEGA 2024; 9:38532-38547. [PMID: 39310147 PMCID: PMC11411534 DOI: 10.1021/acsomega.4c03772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024]
Abstract
The addition of nanoparticles has been presented as an alternative approach to counteract the degradation of polymeric solutions for enhanced oil recovery. In this context, a nanohybrid (NH34) of partially hydrolyzed polyacrylamide (MW ∼12 MDa) and nanosilica modified with 2% 3-aminopropyltriethoxysilane (nSiO2-APTES) was synthesized and evaluated. NH34 was characterized by using dynamic light scattering, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. Fluid-fluid tests assessed its viscosifying power, mechanical stability, filterability, and emulsion behavior. Rock-fluid tests were carried out to determine the nanohybrid's adsorption in porous media, the inaccessible pore volume (IPV), and the resistance (RF) and residual resistance factors (RRF). These tests were conducted under the conditions of a Colombian field. NH34 results were compared with four (4) commercial polymers (P34, P88, P51, and PA2). The viscosifying power of NH34 was observed to be similar to that of the four commercial polymers at a lower concentration, but it exhibits more resistance to mechanical and chemical degradation. The evaluation of the emulsion behavior showed that the nanohybrid neither changed the dehydration process nor altered the crude oil viscosity, favoring its extraction at the wellhead. However, the water clarification treatment must be adjusted because the oil and grease contents and turbidity increase with the residual concentration of NH34. Incremental oil recovery factors obtained by numerical simulation (compared to waterflooding) were P51 (5.5%) > P34 (4.9%) > P88 (4.8%) > NH34 (2.6%) > PA2 (0.9%). The polymers P51, P34, and P88 had a better recovery factor than NH34 and PA2 due to their lower values of residual adsorption and IPV. Few studies have been reported on polymer nanohybrids' emulsion and flow behavior. Therefore, further research is needed to enhance our understanding of the fundamental enhanced oil recovery mechanisms associated with polymer nanohybrids.
Collapse
Affiliation(s)
- Laura M. Corredor
- Instituto
Colombiano del Petróleo, ECOPETROL S.A., Piedecuesta 681011, Colombia
| | - Silvia Escobar
- Universidad
Industrial de Santander, Bucaramanga 680006, Colombia
| | | | | | | | - Kelly Colmenares
- Instituto
Colombiano del Petróleo, ECOPETROL S.A., Piedecuesta 681011, Colombia
| | | | | | - Arnold Rafael Romero Bohórquez
- Grupo
de
Investigación en Química Estructural, Departamento de
Química, Universidad Industrial de
Santander, Bucaramanga 680006, Colombia
| | | |
Collapse
|
2
|
Salem KG, Tantawy MA, Gawish AA, Salem AM, Gomaa S, El-hoshoudy A. Key aspects of polymeric nanofluids as a new enhanced oil recovery approach: A comprehensive review. FUEL 2024; 368:131515. [DOI: 10.1016/j.fuel.2024.131515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
|
3
|
Hosny R, Zahran A, Abotaleb A, Ramzi M, Mubarak MF, Zayed MA, Shahawy AE, Hussein MF. Nanotechnology Impact on Chemical-Enhanced Oil Recovery: A Review and Bibliometric Analysis of Recent Developments. ACS OMEGA 2023; 8:46325-46345. [PMID: 38107971 PMCID: PMC10720301 DOI: 10.1021/acsomega.3c06206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Oil and gas are only two industries that could change because of nanotechnology, a rapidly growing field. The chemical-enhanced oil recovery (CEOR) method uses chemicals to accelerate oil flow from reservoirs. New and enhanced CEOR compounds that are more efficient and eco-friendly can be created using nanotechnology. One of the main research areas is creating novel nanomaterials that can transfer EOR chemicals to the reservoir more effectively. It was creating nanoparticles that can be used to change the viscosity and surface tension of reservoir fluids and constructing nanoparticles that can be utilized to improve the efficiency of the EOR compounds that are already in use. The assessment also identifies some difficulties that must be overcome before nanotechnology-based EOR can become widely used in industry. These difficulties include the requirement for creating mass-producible, cost-effective nanomaterials. There is a need to create strategies for supplying nanomaterials to the reservoir without endangering the formation of the reservoir. The requirement is to evaluate the environmental effects of CEOR compounds based on nanotechnology. The advantages of nanotechnology-based EOR are substantial despite the difficulties. Nanotechnology could make oil production more effective, profitable, and less environmentally harmful. An extensive overview of the most current advancements in nanotechnology-based EOR is provided in this paper. It is a useful resource for researchers and business people interested in this area. This review's analysis of current advancements in nanotechnology-based EOR shows that this area is attracting more and more attention. There have been a lot more publications on this subject in recent years, and a lot of research is being done on many facets of nanotechnology-based EOR. The scientometric investigation discovered serious inadequacies in earlier studies on adopting EOR and its potential benefits for a sustainable future. Research partnerships, joint ventures, and cutting-edge technology that consider assessing current changes and advances in oil output can all benefit from the results of our scientometric analysis.
Collapse
Affiliation(s)
- Rasha Hosny
- Department
of Production, Egyptian Petroleum Research
Institute (EPRI), Ahmed El-Zomer, Cairo 11727, Egypt
| | - Ahmed Zahran
- Department
of Production, Egyptian Petroleum Research
Institute (EPRI), Ahmed El-Zomer, Cairo 11727, Egypt
| | - Ahmed Abotaleb
- Department
of Civil Engineering, Faculty of Engineering, Suez Canal University, Ismailia 41522, Egypt
| | - Mahmoud Ramzi
- Department
of Production, Egyptian Petroleum Research
Institute (EPRI), Ahmed El-Zomer, Cairo 11727, Egypt
| | - Mahmoud F. Mubarak
- Department
of Petroleum Application, Egyptian Petroleum
Research Institute (EPRI), Ahmed El-Zomer, Cairo 11727, Egypt
| | - Mohamed A. Zayed
- Chemistry
Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Abeer El Shahawy
- Department
of Civil Engineering, Faculty of Engineering, Suez Canal University, Ismailia 41522, Egypt
| | - Modather F. Hussein
- Chemistry
Department, College of Science, Al-Jouf
University, Sakakah 74331, Saudi Arabia
| |
Collapse
|
4
|
Salem KG, Tantawy MA, Gawish AA, Gomaa S, El-hoshoudy A. Nanoparticles assisted polymer flooding: Comprehensive assessment and empirical correlation. GEOENERGY SCIENCE AND ENGINEERING 2023; 226:211753. [DOI: 10.1016/j.geoen.2023.211753] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
|
5
|
Gou R, Pu W, Liu R, Chen Y, Zhang T, Lin X. A novel hybrid hyperbranched nanowire CNTs for enhancing oil recovery through increasing viscoelasticity and high-viscous emulsions to compensate reservoir heterogeneity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Li Y, Zhou F, Li B, Cheng T, Zhang M, Wang Q, Yao E, Liang T. Optimization of Fracturing Fluid and Retarded Acid for Stimulating Tight Naturally Fractured Bedrock Reservoirs. ACS OMEGA 2022; 7:25122-25131. [PMID: 35910177 PMCID: PMC9330227 DOI: 10.1021/acsomega.2c01612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
In tight naturally fractured bedrock reservoirs, hydrocarbons are typically stored in fractures, where hydraulic fracturing is needed to connect these fractures to the wellbore. The cross-linked gel is used as the fracturing fluid to reduce the fluid leak-off through natural fractures; however, it can cause formation damage due to its high content of residues after breaking. A synthetic polymer is introduced and evaluated that can maintain a high viscosity to minimize the leak-off , while having a low residue content after breaking. To further enhance the conductivity of the created fracture network, acid is applied to etch and roughen the created fracture faces. Because the target reservoir has a complex mineral composition, a three-step coreflood sequence using reservoir rock samples with controlled fracture widths is established to quantify the enhancement of different retarded acids and to reveal the mechanism behind it. The results indicate the synergy effect of reducing the acid concentration and surfactant adsorption on rock surfaces can lead to an obvious enhancement of the fracture permeability after acidizing, while the mud acid or hydrofluoric acid is not suitable for the target reservoir where concentrations of silicates and clays are relatively high.
Collapse
Affiliation(s)
- Yuan Li
- State
Key Laboratory of Oil and Gas Resources and Prospecting, China University of Petroleum at Beijing, Beijing 102249, China
| | - Fujian Zhou
- State
Key Laboratory of Oil and Gas Resources and Prospecting, China University of Petroleum at Beijing, Beijing 102249, China
| | - Bojun Li
- State
Key Laboratory of Oil and Gas Resources and Prospecting, China University of Petroleum at Beijing, Beijing 102249, China
| | - Tao Cheng
- CNPC
Western Drilling Engineering Co., Ltd, Chengdu 610051, China
| | - Mengchuan Zhang
- State
Key Laboratory of Oil and Gas Resources and Prospecting, China University of Petroleum at Beijing, Beijing 102249, China
| | - Qing Wang
- State
Key Laboratory of Oil and Gas Resources and Prospecting, China University of Petroleum at Beijing, Beijing 102249, China
| | - Erdong Yao
- State
Key Laboratory of Oil and Gas Resources and Prospecting, China University of Petroleum at Beijing, Beijing 102249, China
| | - Tianbo Liang
- State
Key Laboratory of Oil and Gas Resources and Prospecting, China University of Petroleum at Beijing, Beijing 102249, China
| |
Collapse
|
7
|
Gbadamosi A, Patil S, Kamal MS, Adewunmi AA, Yusuff AS, Agi A, Oseh J. Application of Polymers for Chemical Enhanced Oil Recovery: A Review. Polymers (Basel) 2022; 14:polym14071433. [PMID: 35406305 PMCID: PMC9003037 DOI: 10.3390/polym14071433] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Polymers play a significant role in enhanced oil recovery (EOR) due to their viscoelastic properties and macromolecular structure. Herein, the mechanisms of the application of polymeric materials for enhanced oil recovery are elucidated. Subsequently, the polymer types used for EOR, namely synthetic polymers and natural polymers (biopolymers), and their properties are discussed. Moreover, the numerous applications for EOR such as polymer flooding, polymer foam flooding, alkali–polymer flooding, surfactant–polymer flooding, alkali–surfactant–polymer flooding, and polymeric nanofluid flooding are appraised and evaluated. Most of the polymers exhibit pseudoplastic behavior in the presence of shear forces. The biopolymers exhibit better salt tolerance and thermal stability but are susceptible to plugging and biodegradation. As for associative synthetic polyacrylamide, several complexities are involved in unlocking its full potential. Hence, hydrolyzed polyacrylamide remains the most coveted polymer for field application of polymer floods. Finally, alkali–surfactant–polymer flooding shows good efficiency at pilot and field scales, while a recently devised polymeric nanofluid shows good potential for field application of polymer flooding for EOR.
Collapse
Affiliation(s)
- Afeez Gbadamosi
- Department of Petroleum Engineering, College of Petroleum and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Shirish Patil
- Department of Petroleum Engineering, College of Petroleum and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
- Correspondence:
| | - Muhammad Shahzad Kamal
- Centre for Integrative Petroleum Research, College of Petroleum and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (M.S.K.); (A.A.A.)
| | - Ahmad A. Adewunmi
- Centre for Integrative Petroleum Research, College of Petroleum and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (M.S.K.); (A.A.A.)
| | - Adeyinka S. Yusuff
- Department of Chemical and Petroleum Engineering, Afe Babalola University, Ado-Ekiti PMB 5454, Nigeria;
| | - Augustine Agi
- Department of Petroleum Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Jeffrey Oseh
- Department of Petroleum Engineering, School of Engineering and Engineering Technology, Federal University of Technology, Owerri PMB 1526, Nigeria;
| |
Collapse
|
8
|
A simulation study on hydrogel performance for enhanced oil recovery using phase-field method. Sci Rep 2022; 12:2379. [PMID: 35149758 PMCID: PMC8837784 DOI: 10.1038/s41598-022-06388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/28/2022] [Indexed: 11/08/2022] Open
Abstract
Hydrogels are increasingly applied in oil recovery processes. This leads to more controlled flow of fluids in porous media. In this process, hydrogel is injected to the reservoir to block the high permeability areas. The trapped oil in low permeability regions, is then swept by water flooding. pH‐sensitive hydrogel microspheres were synthesized in another work of the authors, which effectively increased the oil recovery factor in experimental studies. In this communication, phase-field approach was used to simulate this process and to obtain the tuning parameters of the model including thickness of the contact surface (є), phase transform parameter (M0), and excess free energy (∧). Diffusion of hydrogels was studied by Cahn–Hilliard conservative approach and the breakage, deformation, and plugging mechanisms were analyzed, based on pressure drop variations in micromodel. Moreover, Effective parameters on oil recovery factor were analyzed. Results indicated a good agreement between experimental and modeling studies of oil recovery factor in water and hydrogel flooding with absolute errors of 2.29% and 4.06%, respectively. The recovery factor was calculated using a statistical method which was in good agreement with the modeling results. The tuned parameters of the model were reported as, є = 111.7 µm, M0 = 5 × 10−13 m3/s, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\wedge = - 0.0003$$\end{document}∧=-0.0003 J/m3.
Collapse
|
9
|
Feng D, Shang Z, Xu P, Yue H, Li X. Electrochemical degradation of hydrolyzed polyacrylamide by a novel La-In co-doped PbO2 electrode: Electrode characterization, influencing factors and degradation pathway. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
El-hoshoudy AN. Experimental and Theoretical Investigation for Synthetic Polymers, Biopolymers and Polymeric Nanocomposites Application in Enhanced Oil Recovery Operations. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-06482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Shayan Nasr M, Esmaeilnezhad E, Choi HJ. Effect of silicon-based nanoparticles on enhanced oil recovery: Review. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.04.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Lin X, Zheng X, Liu R, Wen Y, Huang M, Gou R, Yan Y, Shi Y, Tang J. Extracellular Polymeric Substances Production by ZL-02 For Microbial Enhanced Oil Recovery. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaosha Lin
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People’s Republic of China
- Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, People’s Republic of China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, People’s Republic of China
| | - Xuecheng Zheng
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People’s Republic of China
| | - Rui Liu
- Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, People’s Republic of China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, People’s Republic of China
| | - Yiping Wen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People’s Republic of China
| | - Mengdie Huang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People’s Republic of China
| | - Rui Gou
- Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, People’s Republic of China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, People’s Republic of China
| | - Yuru Yan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People’s Republic of China
| | - Yaoming Shi
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People’s Republic of China
| | - Jia Tang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People’s Republic of China
| |
Collapse
|
13
|
Lashari N, Ganat T. Emerging applications of nanomaterials in chemical enhanced oil recovery: Progress and perspective. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
El-hoshoudy A, Mansour E, Desouky S. Experimental, computational and simulation oversight of silica-co-poly acrylates composite prepared by surfactant-stabilized emulsion for polymer flooding in unconsolidated sandstone reservoirs. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113082] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Corredor LM, Husein MM, Maini BB. A review of polymer nanohybrids for oil recovery. Adv Colloid Interface Sci 2019; 272:102018. [PMID: 31450155 DOI: 10.1016/j.cis.2019.102018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022]
Abstract
As oil fields go into their final stage of production, new technologies are necessary to sustain production and increase the recovery of the hydrocarbon. Chemical injection is an enhanced recovery technique, which focuses on increasing the effectiveness of waterfloods. However, the use of chemical flooding has been hampered by its relatively high cost and the adsorption of the injected chemicals onto the reservoir rocks. In recent years, nanofluids have been launched as an overall less expensive and more efficient alternative to other chemical agents. Nanoparticle inclusion is also proposed to mitigate polymer flooding performance limitations under harsh reservoir conditions. This review presents a comprehensive discussion of the most recent developments of polymer nanohybrids for oil recovery. First, the preparation methods of polymer nanohybrids are summarized and explained. Then, an explanation of the different mechanisms leading to improved oil recovery are highlighted. Finally, the current challenges and opportunities for future development and application of polymer nanohybrids for chemical flooding are identified.
Collapse
|
16
|
Feasibility Study of Applying Modified Nano-SiO 2 Hyperbranched Copolymers for Enhanced Oil Recovery in Low-Mid Permeability Reservoirs. Polymers (Basel) 2019; 11:polym11091483. [PMID: 31514371 PMCID: PMC6780960 DOI: 10.3390/polym11091483] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 11/21/2022] Open
Abstract
To improve oil recovery significantly in low-mid permeability reservoirs, a novel modified nano-SiO2 hyperbranched copolymer (HPBS), consisting of polyacrylamide as hydrophilic branched chains and modified nano-SiO2 as the core, was synthesized via an in situ free radical polymerization reaction. The structure and properties of the hyperbranched copolymer were characterized through a range of experiments, which showed that HBPS copolymers have better stability and enhanced oil recovery (EOR) capacity and also smaller hydrodynamic radius in comparison with hydrolyzed polyacrylamide (HPAM). The flooding experiments indicated that when a 1000 mg/L HPBS solution was injected, the resistance factor (RF) and residual resistance factor (RRF) increased after the injection. Following a 98% water cut after preliminary water flooding, 0.3 pore volume (PV) and 1000 mg/L HPBS solution flooding and extended water flooding (EWF) can further increase the oil recovery by 18.74% in comparison with 8.12% oil recovery when using HPAM. In this study, one can recognize that polymer flooding would be applicable in low-mid permeability reservoirs.
Collapse
|
17
|
Song T, Li S, Lu Y, Yan D, Sun P, Bao M, Li Y. Biodegradation of hydrolyzed polyacrylamide by a Bacillus megaterium strain SZK-5: Functional enzymes and antioxidant defense mechanism. CHEMOSPHERE 2019; 231:184-193. [PMID: 31129399 DOI: 10.1016/j.chemosphere.2019.05.143] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/27/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Hydrolyzed polyacrylamide (HPAM) is the most widely used water-soluble linear polymer with high molecular weight in polymer flooding. Microbiological degradation is an environment-friendly and effective method of treating HPAM-containing oilfield produced water. In this study, a strain SZK-5 that could degrade HPAM was isolated from soil contaminated by oilfield produced water. Based on morphological, biochemical characteristics and 16S rDNA sequence homology analysis, the strain was identified as Bacillus megaterium. The biodegradation capability of strain SZK-5 was determined by incubation in a mineral salt medium (MSM) containing HPAM under different environmental conditions, showing 55.93% of the HPAM removed after 7 d of incubation under the optimum conditions ((NH4)2SO4 = 1667.9 mg L-1, temperature = 24.05 °C and pH = 8.19). Cytochrome P450 (CYP) and urease (URE) played significant roles in biological carbon and nitrogen removal, respectively. The strain SZK-5 could resist the damages caused by oxidative stress given by crude oil and HPAM. To our knowledge, this is the first report about the biodegradation of HPAM by B. megaterium. These results suggest that strain SZK-5 might be a new auxiliary microbiological resource for the biodegradation of HPAM residue in wastewater and soil.
Collapse
Affiliation(s)
- Tianwen Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Shanshan Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yifeng Lu
- Department of Environmental Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Dong Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Peiyan Sun
- Key Laboratory of Marine Spill Oil Identification and Damage Assessment Technology, North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, 266033, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Yang Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China; China Petrochemical Corporation (Sinopec Group), Beijing, 100728, China
| |
Collapse
|
18
|
Wu Q, Gou S, Huang J, Fan G, Li S, Liu M. Hyper-branched structure-an active carrier for copolymer with surface activity, anti-polyelectrolyte effect and hydrophobic association in enhanced oil recovery. RSC Adv 2019; 9:16406-16417. [PMID: 35516380 PMCID: PMC9064395 DOI: 10.1039/c9ra01554j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/10/2019] [Indexed: 12/16/2022] Open
Abstract
Herein, a hyper-branched polymer h-PMAD with, simultaneously, surface activity, an anti-polyelectrolyte effect and a hydrophobic association was prepared via aqueous solution free radical polymerization, and characterized by IR, NMR, TG-DTG and SEM. The polymer h-PMAD provided excellent comprehensive properties in terms of surface activity, thickening, water solubility, rheology and aging, which were compared with studies of HPAM and the homologous linear polymer PMAD. Specifically, the IFT value was 55.40 mN m-1, 789.24 mPa s apparent viscosity with a dissolution time of 72 min, 97.72, 90.77 and 105.81 mPa s with Na+, Ca2+ and Mg2+ of 20 000, 2000 and 2000 mg L-1, respectively. Meanwhile, the non-Newtonian shear thinning behavior had a 96.33% viscosity retention while the shear rate went from 170 s-1 to 510 s-1 and then returned to 170 s-1 again and 0.12 Hz curve, with an intersection frequency of G' and G''. Also, it had 33.51% and 50.96% viscosity retention in formation and deionized water at 100 °C and a low viscosity loss in formation water at 80 °C over 4 weeks. Moreover, the h-PMAD had an EOR of 11.61%, was obviously higher than PMAD with 8.19% and HPAM with 5.88%. Most importantly, the better EOR of h-PMAD over that of PMAD testified that the hyper-branched structure provided an active carrier for copolymers with functionalized monomers to exert greater effects in displacement systems, which is of an extraordinary meaning.
Collapse
Affiliation(s)
- Qi Wu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University Chengdu 610500 P. R. China
- Institute of Chemical Materials, China Academy of Engineering Physics Mianyang 621900 China
| | - Shaohua Gou
- College of Chemistry and Chemical Engineering, Southwest Petroleum University Chengdu 610500 P. R. China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University Chengdu 610500 P. R. China
| | - Jinglun Huang
- Institute of Chemical Materials, China Academy of Engineering Physics Mianyang 621900 China
| | - Guijuan Fan
- Institute of Chemical Materials, China Academy of Engineering Physics Mianyang 621900 China
| | - Shiwei Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University Chengdu 610500 P. R. China
| | - Mengyu Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University Chengdu 610500 P. R. China
| |
Collapse
|
19
|
Corredor LM, Husein MM, Maini BB. Impact of PAM-Grafted Nanoparticles on the Performance of Hydrolyzed Polyacrylamide Solutions for Heavy Oil Recovery at Different Salinities. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01290] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Laura M. Corredor
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Maen M. Husein
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Brij B. Maini
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
20
|
Wang F, Lü H, Wang X, Jing B, Duan M, Xiong Y, Fang S. Preparation of a selective flocculant for treatment of oily wastewater produced from polymer flooding and its flocculant mechanism. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:1648-1656. [PMID: 31241470 DOI: 10.2166/wst.2019.154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
There are residual polymers in the oily wastewater produced from polymer flooding (OWPF); keeping the residual polymer in the water during the flocculation is meaningful and challenging. In this paper, a selective flocculant (denoted as PDC10) which can remove the oil while keeping partially hydrolyzed polyacrylamide (HPAM) in water was prepared by copolymerization of decyl two methyl vinylbenzyl ammonium chloride (C10MVBA) and dimethyl aminopropyl methacryamide (DMAPMA). By using oil removal and HPAM retention as evaluation indexes, the synthesis condition of PDC10 was optimized. The optimum PDC10 exhibited oil removal of 98.0% and HPAM retention of 80.5%. Its HPAM retention is much higher than that of a regular cationic flocculant. Measurements of zeta potential, interfacial tension, interfacial dilational modulus and a dual polarization interferometry (DPI) test were carried out for investigating the flocculation mechanism of PDC10. The mechanism of PDC10 was that it can bridge and flocculate oil droplets by electrostatic interaction and hydrophobic interaction. It also preferred to distribute at the interface, and its interaction with HPAM in bulk water was weak, which confirms its selective flocculation properties.
Collapse
Affiliation(s)
- Fei Wang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China E-mail:
| | - Hongmei Lü
- Research Institute of Petroleum Engineering Technology, Sinopec Jiangsu Oilfield Branch, Yangzhou, Jiangsu 225009, China
| | - Xiujun Wang
- Beijing Research Center of China National Offshore Oil Corporation, Beijing 100027, China and State Key Laboratory of Offshore Oilfield Exploitation, Beijing 100027, China
| | - Bo Jing
- Beijing Research Center of China National Offshore Oil Corporation, Beijing 100027, China and State Key Laboratory of Offshore Oilfield Exploitation, Beijing 100027, China
| | - Ming Duan
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China E-mail:
| | - Yan Xiong
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China E-mail:
| | - Shenwen Fang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China E-mail:
| |
Collapse
|
21
|
Gbadamosi AO, Junin R, Manan MA, Agi A, Yusuff AS. An overview of chemical enhanced oil recovery: recent advances and prospects. INTERNATIONAL NANO LETTERS 2019. [DOI: 10.1007/s40089-019-0272-8] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Enhanced Oil Recovery by a Suspension of Core-Shell Polymeric Nanoparticles in Heterogeneous Low-Permeability Oil Reservoirs. NANOMATERIALS 2019; 9:nano9040600. [PMID: 30979030 PMCID: PMC6523473 DOI: 10.3390/nano9040600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/07/2019] [Accepted: 04/10/2019] [Indexed: 11/30/2022]
Abstract
Polymeric nanoparticle suspension is a newly developed oil-displacing agent for enhanced oil recovery (EOR) in low-permeability reservoirs. In this work, SiO2/P(MBAAm-co-AM) polymeric nanoparticles were successfully synthesized by a simple distillation–precipitation polymerization method. Due to the introduction of polymer, the SiO2/P(MBAAm-co-AM) nanoparticles show a favorable swelling performance in aqueous solution, and their particle sizes increase from 631 to 1258 nm as the swelling times increase from 24 to 120 h. The apparent viscosity of SiO2/P(MBAAm-co-AM) suspension increases with an increase of mass concentration and swelling time, whereas it decreases as the salinity and temperature increase. The SiO2/P(MBAAm-co-AM) suspension behaves like a non-Newtonian fluid at lower shear rates, yet like a Newtonian fluid at shear rates greater than 300 s−1. The EOR tests of the SiO2/P(MBAAm-co-AM) suspension in heterogeneous, low-permeability cores show that SiO2/P(MBAAm-co-AM) nanoparticles can effectively improve the sweep efficiency and recover more residual oils. A high permeability ratio can result in a high incremental oil recovery in parallel cores. With an increase of the permeability ratio of parallel cores from 1.40 to 15.49, the ratios of incremental oil recoveries (low permeability/high permeability) change from 7.69/4.61 to 23.61/8.46. This work demonstrates that this SiO2/P(MBAAm-co-AM) suspension is an excellent conformance control agent for EOR in heterogeneous, low-permeability reservoirs. The findings of this study can help to further the understanding of the mechanisms of EOR using SiO2/P(MBAAm-co-AM) suspension in heterogeneous, low-permeability reservoirs.
Collapse
|
23
|
Oil recovery performance of a modified HAPAM with lower hydrophobicity, higher molecular weight: A comparative study with conventional HAPAM, HPAM. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.12.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Liu R, Du D, Pu W, Peng Q, Tao Z, Pang Y. Viscoelastic displacement and anomalously enhanced oil recovery of a novel star-like amphiphilic polyacrylamide. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2018.12.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Ma G, Li X, Wang X, Liu G, Jiang L, Yang K. Preparation, rheological and drag reduction properties of hydrophobically associating polyacrylamide polymer. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2018.1461637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Guoyan Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an, Shaanxi province, People's Republic of China
| | - Xiaorui Li
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an, Shaanxi province, People's Republic of China
| | - Xiaorong Wang
- College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, Shaanxi province, People's Republic of China
| | - Guanjun Liu
- CNOOC Ener Tech-Drilling & Production Company, Tianjin, People's Republic of China
| | - Luan Jiang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an, Shaanxi province, People's Republic of China
| | - Kai Yang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an, Shaanxi province, People's Republic of China
| |
Collapse
|
26
|
Gbadamosi AO, Junin R, Manan MA, Yekeen N, Agi A, Oseh JO. Recent advances and prospects in polymeric nanofluids application for enhanced oil recovery. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.05.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Qiu J, Wang H, Du Z, Cheng X, Liu Y, Wang H. Preparation of polyacrylamide via dispersion polymerization with gelatin as a stabilizer and its synergistic effect on organic dye flocculation. J Appl Polym Sci 2018. [DOI: 10.1002/app.46298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jinghong Qiu
- Textile Institute, College of Light Industry, Textile, and Food Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Hui Wang
- Textile Institute, College of Light Industry, Textile, and Food Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Zongliang Du
- Textile Institute, College of Light Industry, Textile, and Food Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Xu Cheng
- Textile Institute, College of Light Industry, Textile, and Food Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Yuansen Liu
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration; Xiamen 361005 People's Republic of China
| | - Haibo Wang
- Textile Institute, College of Light Industry, Textile, and Food Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| |
Collapse
|