1
|
Yin H, Liu F, Abdiryim T, Chen J, Liu X. Sodium carboxymethyl cellulose and MXene reinforced multifunctional conductive hydrogels for multimodal sensors and flexible supercapacitors. Carbohydr Polym 2024; 327:121677. [PMID: 38171688 DOI: 10.1016/j.carbpol.2023.121677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
With the growing demand for eco-friendly materials in wearable smart electronic devices, renewable, biocompatible, and low-cost hydrogels based on natural polymers have attracted much attention. Cellulose, as one of the renewable and degradable natural polymers, shows great potential in wearable smart electronic devices. Multifunctional conductive cellulose-based hydrogels are designed for flexible electronic devices by adding sodium carboxymethyl cellulose and MXene into polyacrylic acid networks. The multifunctional hydrogels possess excellent mechanical property (stress: 310 kPa; strain: 1127 %), toughness (206.67 KJ m-3), conductivity (1.09 ± 0.12 S m-1) and adhesion (82.19 ± 3.65 kPa). The multifunctional conductive hydrogels serve as strain sensors (Gauge Factor (GF) = 5.79, 0-700 % strain; GF = 14.0, 700-900 % strain; GF = 40.36, 900-1000 % strain; response time: 300 ms; recovery time: 200 ms) and temperature sensors (Temperature coefficient of resistance (TCR) = 2.5755 °C-1 at 35 °C- 60 °C). The sensor detects human activities with clear and steady signals. A distributed array of flexible sensors is created to measure the magnitude and distribution of pressure and a hydrogel-based flexible touch keyboard is also fabricated to recognize writing trajectories, pressures and speeds. Furthermore, a flexible hydrogel-based supercapacitor powers the LED and exhibits good cyclic stability over 15,000 charge-discharge cycles.
Collapse
Affiliation(s)
- Hongyan Yin
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Fangfei Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Tursun Abdiryim
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Jiaying Chen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Xiong Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| |
Collapse
|
2
|
Sun Y, Ku BJ, Moon MJ. Microstructure of the silk fibroin-based hydrogel scaffolds derived from the orb-web spider Trichonephila clavata. Appl Microsc 2024; 54:3. [PMID: 38336879 PMCID: PMC10858014 DOI: 10.1186/s42649-024-00096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
Due to the unique properties of the silk fibroin (SF) made from silkworm, SF-based hydrogels have recently received significant attention for various biomedical applications. However, research on the SF-based hydrogels isolated from spider silks has been rtricted due to the limited collection and preparation of naïve silk materials. Therefore, this study focused on the microstructural characteristics of hydrogel scaffolds derived from two types of woven silk glands: the major ampullate gland (MAG) and the tubuliform gland (TG), in the orb-web spider Trichonephila clavate. We compared these spider glands with those of the silk fibroin (SF) hydrogel scaffold extracted from the cocoon of the insect silkworm Bombyx mori. Our FESEM analysis revealed that the SF hydrogel has high porosity, translucency, and a loose upper structure, with attached SF fibers providing stability. The MAG hydrogel displayed even higher porosity, as well as elongated fibrous structures, and improved mechanical properties: while the TG hydrogel showed increased porosity, ridge-like or wall-like structures, and stable biocapacity formed by physical crosslinking. Due to their powerful and versatile microstructural characteristics, the MAG and TG hydrogels can become tailored substrates, very effective for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Yan Sun
- Department of Biological Sciences, Dankook University, Cheonan, 31116, Korea
| | - Bon-Jin Ku
- Department of Biological Sciences, Dankook University, Cheonan, 31116, Korea
| | - Myung-Jin Moon
- Department of Biological Sciences, Dankook University, Cheonan, 31116, Korea.
| |
Collapse
|
3
|
Carroll B, Thanh MTH, Patteson AE. Dynamic remodeling of fiber networks with stiff inclusions under compressive loading. Acta Biomater 2023; 163:106-116. [PMID: 36182057 PMCID: PMC10227767 DOI: 10.1016/j.actbio.2022.09.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
The ability of tissues to sustain and withstand mechanical stress is critical to tissue development and healthy tissue maintenance. The mechanical properties of tissues are typically considered to be dominated by the fibrous extracellular matrix (ECM) component of tissues. Fiber network mechanics can capture certain mechanical features of tissues, such as shear strain stiffening, but is insufficient in describing the compressive response of certain tissues and blood clots that are rich in extracellular matrix. To understand the mechanical response of tissues, we employ a contemporary mechanical model, a fibrous network of fibrin embedded with inert bead inclusions that preserve the volume-conserving constraints of cells in tissues. Combining bulk mechanical rheology and a custom imaging device, we show that the presence of inclusions alters the local dynamic remodeling of the networks undergoing uniaxial compressive strains and demonstrate non-affine correlated motion within a fiber-bead network, predicted to stretch fibers in the network and lead to the ability of the network to stiffen under compression, a key feature of real tissues. These findings have important implications for understanding how local structural properties of cells and ECM fibers impact the bulk mechanical response of real tissues. STATEMENT OF SIGNIFICANCE: To understand why real tissue stiffens under compression, we study a model tissue system which also stiffens: a fibrin network embedded with stiff beads. We design a device that images compression of both fiber and fiber-bead networks. Distinct from previous imaging studies, this setup can dynamically capture network deformation on scales larger than single fibers. From the videos, we see fluid flow and network remodeling are both critical to compression behavior. The fiber-bead network has faster fluid flow, reduced network recovery, and correlated motion during network relaxation. We hypothesize that the beads hinder network relaxation of stretched fibers, thus retaining the applied stress and exhibiting stiffening. Our findings reveal important details for modeling tissue mechanics towards optimizing healthcare.
Collapse
Affiliation(s)
- Bobby Carroll
- Physics Department and BioInspired Institute, Syracuse University, Physics Building, Syracuse, NY 13244, USA
| | - Minh-Tri Ho Thanh
- Physics Department and BioInspired Institute, Syracuse University, Physics Building, Syracuse, NY 13244, USA
| | - Alison E Patteson
- Physics Department and BioInspired Institute, Syracuse University, Physics Building, Syracuse, NY 13244, USA.
| |
Collapse
|
4
|
Berardi M, Gnanachandran K, Jiang J, Bielawski K, Visser CW, Lekka M, Akca BI. Dynamic mechanical analysis of suspended soft bodies via hydraulic force spectroscopy. SOFT MATTER 2023; 19:615-624. [PMID: 36445288 DOI: 10.1039/d2sm01173e] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The rheological characterization of soft suspended bodies, such as cells, organoids, or synthetic microstructures, is particularly challenging, even with state-of-the-art methods (e.g. atomic force microscopy, AFM). Providing well-defined boundary conditions for modeling typically requires fixating the sample on a substrate, which is a delicate and time-consuming procedure. Moreover, it needs to be tuned for each chemistry and geometry. Here, we validate a novel technique, called hydraulic force spectroscopy (HFS), against AFM dynamic indentation taken as the gold standard. Combining experimental data with finite element modeling, we show that HFS gives results comparable to AFM microrheology over multiple decades, while obviating any sample preparation requirements.
Collapse
Affiliation(s)
- Massimiliano Berardi
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
- Optics11, Hettenheuvelweg 37-39, 1101 BM, Amsterdam, The Netherlands
| | - Kajangi Gnanachandran
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Jieke Jiang
- Engineering Fluid Dynamics group, Department of Thermal and Fluid Engineering, Faculty of Engineering Technology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Kevin Bielawski
- Optics11, Hettenheuvelweg 37-39, 1101 BM, Amsterdam, The Netherlands
| | - Claas W Visser
- Engineering Fluid Dynamics group, Department of Thermal and Fluid Engineering, Faculty of Engineering Technology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - B Imran Akca
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Gao Y, Cho HJ. Quantifying the trade-off between stiffness and permeability in hydrogels. SOFT MATTER 2022; 18:7735-7740. [PMID: 36205349 DOI: 10.1039/d2sm01215d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hydrogels have a distinct combination of mechanical and water-transport behaviors. As hydrogels stiffen when they de-swell, they become less permeable. Here, we combine de Gennes' semi-dilute polymer theory with the Kozeny-Carman equation to develop a simple, succinct scaling law describing the relationship between mechanical stiffness and hydraulic permeability where permeability scales with stiffness to the -8/9 power. We find a remarkably close agreement between the scaling law and experimental results across four different polymer families with varied crosslinkings. This inverse relationship establishes a fundamental trade-off between permeability and stiffness.
Collapse
Affiliation(s)
- Yiwei Gao
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA.
| | - H Jeremy Cho
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA.
| |
Collapse
|
6
|
Li Y, Wong IY, Guo M. Reciprocity of Cell Mechanics with Extracellular Stimuli: Emerging Opportunities for Translational Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107305. [PMID: 35319155 PMCID: PMC9463119 DOI: 10.1002/smll.202107305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Human cells encounter dynamic mechanical cues in healthy and diseased tissues, which regulate their molecular and biophysical phenotype, including intracellular mechanics as well as force generation. Recent developments in bio/nanomaterials and microfluidics permit exquisitely sensitive measurements of cell mechanics, as well as spatiotemporal control over external mechanical stimuli to regulate cell behavior. In this review, the mechanobiology of cells interacting bidirectionally with their surrounding microenvironment, and the potential relevance for translational medicine are considered. Key fundamental concepts underlying the mechanics of living cells as well as the extracelluar matrix are first introduced. Then the authors consider case studies based on 1) microfluidic measurements of nonadherent cell deformability, 2) cell migration on micro/nano-topographies, 3) traction measurements of cells in three-dimensional (3D) matrix, 4) mechanical programming of organoid morphogenesis, as well as 5) active mechanical stimuli for potential therapeutics. These examples highlight the promise of disease diagnosis using mechanical measurements, a systems-level understanding linking molecular with biophysical phenotype, as well as therapies based on mechanical perturbations. This review concludes with a critical discussion of these emerging technologies and future directions at the interface of engineering, biology, and medicine.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
7
|
Wang M, Zang Y, Hong K, Zhao X, Yu C, Liu D, An Z, Wang L, Yue W, Nie G. Preparation of pH-sensitive carboxymethyl cellulose/chitosan/alginate hydrogel beads with reticulated shell structure to deliver Bacillus subtilis natto. Int J Biol Macromol 2021; 192:684-691. [PMID: 34648802 DOI: 10.1016/j.ijbiomac.2021.10.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 01/21/2023]
Abstract
pH-sensitive hydrogels have been applied in delivering probiotics and drugs. However, pH sensitivity has been found to be contradictory with structural stability in hydrogel preparation. In this work, a novel strategy based on two systems of sodium carboxymethyl cellulose (CMC)/chitosan (CS) and sodium alginate (SA)/calcium chloride was designed to construct a reticulated shell structure stable for 3 h in simulated gastric fluid (pH 1.2) but began to break up at 2 h in simulated intestinal fluid (pH 6.8), exhibiting obvious pH sensitivity. The embedding rate of Bacillus subtilis natto reached to 67.3%, and the sustained release lasted for more than 10 h. It is implicated that the reticulated shell structure has harmoniously balanced the two incompatible properties of pH sensitivity and sustained release of CMC/CS/SA beads.
Collapse
Affiliation(s)
- Mengmeng Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Yipeng Zang
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Kangjin Hong
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Xiaofeng Zhao
- Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, 310036 Hangzhou, China; College of Life and Environmental Sciences, Hangzhou Normal University, 310036 Hangzhou, China
| | - Chenrui Yu
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Dandan Liu
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Zichao An
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Liyuan Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Wenjin Yue
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, 241000 Wuhu, China.
| | - Guangjun Nie
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, 241000 Wuhu, China.
| |
Collapse
|
8
|
Cellulose-based hydrogel beads: Preparation and characterization. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|