1
|
Davidson CLG, Lott ME, Trachsel L, Wong AJ, Olson RA, Pedro DI, Sawyer WG, Sumerlin BS. Inverse Miniemulsion Enables the Continuous-Flow Synthesis of Controlled Ultra-High Molecular Weight Polymers. ACS Macro Lett 2023; 12:1224-1230. [PMID: 37624643 DOI: 10.1021/acsmacrolett.3c00431] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
We report the controlled synthesis of ultra-high molecular weight (UHMW) polymers (Mn ≥ 106 g/mol) via continuous flow in a tubular reactor. At high monomer conversion, UHMW polymers in homogeneous batch polymerization exhibit high viscosities that pose challenges for employing continuous flow reactors. However, under heterogeneous inverse miniemulsion (IME) conditions, UHMW polymers can be produced within the dispersed phase, while the viscosity of the heterogeneous mixture remains approximately the same as the viscosity of the continuous phase. Conducting such IME polymerizations in flow results in a faster rate of polymerization compared to batch IME polymerizations while still providing excellent control over molecular weight up to 106 g/mol. Crucial emulsion parameters, such as particle size and stability under continuous flow conditions, were examined using dynamic light scattering. A range of poly(N,N-dimethylacrylamide) and poly(4-acryloylmorpholine) polymers with molecular weights of 104-106 g/mol (Đ ≤ 1.31) were produced by this method using water-soluble trithiocarbonates as photoiniferters.
Collapse
Affiliation(s)
- Cullen L G Davidson
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Megan E Lott
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Lucca Trachsel
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Alexander J Wong
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Rebecca A Olson
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Diego I Pedro
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - W Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S Sumerlin
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
2
|
Sen N, Ajish JK, Singh KK, Chandwadkar P, Kumar M, Acharya C, Shenoy KT. Flow synthesis of poly(acrylamide-co-acrylic acid) microspheres in a microreactor: Experimental and CFD studies. J DISPER SCI TECHNOL 2023. [DOI: 10.1080/01932691.2022.2156531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Nirvik Sen
- Chemical Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
| | - J. K. Ajish
- Radiation and Photo Chemistry Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
| | - K. K. Singh
- Chemical Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
| | - P. Chandwadkar
- Molecular Biology Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
| | - M. Kumar
- Radiation and Photo Chemistry Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
| | - C. Acharya
- Molecular Biology Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
| | - K. T. Shenoy
- Chemical Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
| |
Collapse
|
3
|
Xie J, Jia X, Wang D, Li Y, Sun BC, Luo Y, Chu GW, Chen JF. Controllable and high-throughput preparation of microdroplet using an ultra-high speed rotating packed bed. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Ling FWM, Abdulbari HA, Chin SY. Heterogeneous Microfluidic Reactors: A Review and an Insight of Enzymatic Reactions. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fiona W. M. Ling
- Universiti Malaysia Pahang Centre for Research in Advanced Fluid & Processes (FLUID CENTRE) Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
- Universiti Malaysia Pahang Department of Chemical Engineering, College of Engineering Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
| | - Hayder A. Abdulbari
- Universiti Malaysia Pahang Centre for Research in Advanced Fluid & Processes (FLUID CENTRE) Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
- Universiti Malaysia Pahang Department of Chemical Engineering, College of Engineering Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
| | - Sim Yee Chin
- Universiti Malaysia Pahang Department of Chemical Engineering, College of Engineering Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
| |
Collapse
|
5
|
Watanabe T, Karita K, Manabe M, Ono T. Preparation of Monodisperse Poly(Methyl Methacrylate)/Polystyrene Composite Particles by Seeded Emulsion Polymerization Using a Sequential Flow Process. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.742447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We develop a sequential flow process for the production of monodisperse poly (methyl methacrylate) (PMMA)/polystyrene (PS) composite particles through a soap-free emulsion polymerization of methyl methacrylate (MMA) using the first water-in-oil (W/O) slug flow and a subsequent seeded emulsion polymerization of styrene (St) using the second W/O slug flow. In this process, monodisperse PMMA seed particles are first formed in the dispersed aqueous phase of the first W/O slug flow. Subsequently, removal of the oil phase from the slug flow is achieved through a porous hydrophobic tubing, resulting in a single flow of the aqueous phase containing the seed particles. The aqueous phase is then mixed with an oil phase containing St monomer to form the second W/O slug flow. Finally, monodisperse PMMA/PS composite particles are obtained by a seeded emulsion polymerization of St using the second W/O slug flow. We compared the reaction performance between the slug flow and the batch processes in terms of particle diameter, monomer conversion, particle size distribution, and the number of particles in the system. We found that internal circulation flow within the slugs can enhance mass transfer efficiency between them during polymerization, which results in monodisperse PMMA/PS composite particles with a large particle diameter and a high monomer conversion in a short reaction time, compared to those prepared using the batch process. We believe that this sequential microflow process can be a versatile strategy to continuously produce monodisperse composite particles or core-shell particles in a short reaction time.
Collapse
|
6
|
Flow synthesis of monodisperse micron-sized polymer particles by heterogeneous polymerization using a water-in-oil slug flow with a non-ionic surfactant. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04705-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Reis MH, Leibfarth FA, Pitet LM. Polymerizations in Continuous Flow: Recent Advances in the Synthesis of Diverse Polymeric Materials. ACS Macro Lett 2020; 9:123-133. [PMID: 35638663 DOI: 10.1021/acsmacrolett.9b00933] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The number of reports using continuous flow technology in tubular reactors to perform precision polymerizations has grown enormously in recent years. Flow polymerizations allow highly efficient preparation of polymers exhibiting well-defined molecular characteristics, and has been applied to a slew of monomers and various polymerization mechanisms, including anionic, cationic, radical, and ring-opening. Polymerization conducted in continuous flow offers several distinct advantages, including improved efficiency, reproducibility, and enhanced safety for exothermic polymerizations using highly toxic components, high pressures, and high temperatures. The further development of this technology is thus of relevance for many industrial polymerization processes. While much progress has been demonstrated in recent years, opportunities remain for increasing the compositional and architectural complexity of polymeric materials synthesized in a continuous fashion. Extending the reactor processing principles that have heretofore been focused on optimizing homopolymerization to include multisegment block copolymers, particularly from monomers that propagate via incompatible mechanisms, represents a major challenge and coveted target for continuous flow polymerization. Likewise, the spatial and temporal control of reactivity afforded by flow chemistry has and will continue to enable the production of complex polymeric architectures. This Viewpoint offers a brief background of continuous flow polymerization focused primarily on tubular (micro)reactors and includes selected examples that are relevant to these specific developments.
Collapse
Affiliation(s)
- Marcus H. Reis
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Frank A. Leibfarth
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Louis M. Pitet
- Advanced Polymer Functionalization Group, Institute for Materials Research (IMO), Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| |
Collapse
|
8
|
Continuous-Flow Microreactors for Polymer Synthesis: Engineering Principles and Applications. Top Curr Chem (Cham) 2018; 376:44. [DOI: 10.1007/s41061-018-0224-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/28/2018] [Indexed: 12/16/2022]
|