1
|
Dien ND, Pham TTH, Vu XH, Xuan VT, Nguyen TTT, Trang TT, Van Hao N, Nga PT, Kim Chi TT, Giang TTH, Toan ND. High photocatalytic efficiency of a ZnO nanoplate/Fe 2O 3 nanospindle hybrid using visible light for methylene blue degradation. RSC Adv 2024; 14:28244-28259. [PMID: 39234520 PMCID: PMC11372561 DOI: 10.1039/d4ra04230a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/14/2024] [Indexed: 09/06/2024] Open
Abstract
In this work, ZnO nanoplates and Fe2O3 nanospindles were successfully fabricated via a simple hydrothermal method using inorganic salts as precursors. The ZnO/Fe2O3 hybrid was fabricated using a mechanical mixture of two different ZnO : Fe2O3 weight ratios to investigate the effect of weight ratio on catalytic properties. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that ZnO nanoplates (NPls) are about 20 nm thick with lateral dimensions of 100 × 200 nm, and Fe2O3 nanospindles (NSs) are about 500 nm long and 50 nm wide. X-ray diffraction (XRD) patterns revealed the successful formation of the ZnO, Fe2O3, and ZnO/Fe2O3 samples and indicated that their crystallite sizes varied from 20 to 29 nm depending on the ZnO : Fe2O3 weight ratio. Ultraviolet-visible (UV-vis) spectra showed that the bandgap energies of ZnO and Fe2O3 were 3.15 eV and 2.1 eV, respectively. Energy dispersive X-ray spectroscopy (EDS) results revealed the successful combination of ZnO and Fe2O3. Photocatalytic activity of the materials was evaluated through the degradation of methylene blue (MB) in aqueous solution under green light-emitting diode (GLED) irradiation. The results indicated that the ZnO/Fe2O3 composite showed a remarkable enhanced degradation capacity compared to bare ZnO NPls and Fe2O3 NSs. The ZnO : Fe2O3 = 3 : 2 sample demonstrated the best performance among all samples under identical conditions with a degradation efficiency of 99.3% for MB after 85 min. The optimum photocatalytic activity of the sample with ZnO : Fe2O3 = 3 : 2 was nearly 3.6% higher than that of the pure ZnO sample and 1.12 times more than that of the pristine Fe2O3 sample. Moreover, the highest photo-degradation was obtained at a photocatalyst dosage of 0.25 g l-1 in dye solution.
Collapse
Affiliation(s)
- Nguyen Dac Dien
- Faculty of Occupational Safety and Health, Vietnam Trade Union University 169 Tay Son Street, Dong Da District Hanoi City Vietnam
| | - Thi Thu Ha Pham
- Faculty of Chemistry, TNU-University of Sciences Tan Thinh Ward Thai Nguyen City Vietnam
| | - Xuan Hoa Vu
- Institute of Science and Technology, TNU-University of Sciences Tan Thinh Ward Thai Nguyen City Vietnam
| | - Vuong Truong Xuan
- Faculty of Chemistry, TNU-University of Sciences Tan Thinh Ward Thai Nguyen City Vietnam
| | - Thi Thu Thuy Nguyen
- Faculty of Chemistry, TNU-University of Sciences Tan Thinh Ward Thai Nguyen City Vietnam
| | - Tran Thu Trang
- Institute of Science and Technology, TNU-University of Sciences Tan Thinh Ward Thai Nguyen City Vietnam
| | - Nguyen Van Hao
- Institute of Science and Technology, TNU-University of Sciences Tan Thinh Ward Thai Nguyen City Vietnam
| | - Pham Thi Nga
- Institute of Science and Technology, TNU-University of Sciences Tan Thinh Ward Thai Nguyen City Vietnam
- Faculty of Secondary School, Hoa Lu University 2 Xuan Thanh Street, Ninh Nhat Commune Ninh Binh City Vietnam
| | - Tran Thi Kim Chi
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Ha Noi City Vietnam
| | - Tran Thi Huong Giang
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Ha Noi City Vietnam
| | - Nguyen Duc Toan
- Centre for Quantum Electronics, Institute of Physics, Vietnam Academy of Science and Technology 10 Dao Tan, Ba Dinh District Ha Noi City Vietnam
| |
Collapse
|
2
|
Mamba FB, Mbuli BS, Ramontja J. Synergistic effect of ZnO/Ag 2O@g-C 3N 4 based nanocomposites embedded in carrageenan matrix for dye degradation in water. Heliyon 2024; 10:e31109. [PMID: 38828361 PMCID: PMC11140603 DOI: 10.1016/j.heliyon.2024.e31109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
This research achieved success by synthesizing innovative nanocomposite composed of zinc oxide (ZnO), graphitic carbon nitride (g-C3N4) and silver oxide (Ag2O) nanomaterials incorporated into a carrageenan matrix, thus creating an environmentally friendly and stable support structure. The synthesis process involved hydrothermal and chemical precipitation methods to create photocatalytic g-C3N4, ZnO, and Ag2O nanocomposites. The success is evident through the characterization results, which unveiled distinctive peaks corresponding to Zn-O (590-404 cm-1) and Ag-O (2072 cm-1) stretching in the Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analyses, conclusively confirming the successful synthesis of g-C3N4, ZnO, Ag2O, and their respective nanocomposites. Further validation through a scanning electron microscope coupled with an energy dispersive spectrometer (SEM-EDX) and elemental mapping affirmed the presence of Zn, O, Ag, C, and N. Additionally, transmission electron microscope (TEM) imaging unveiled the nanosheet morphology of g-C3N4, the nanorod structure of ZnO, and the spherical form of Ag2O nanomaterials. ZnO and Ag2O nanomaterials demonstrated a consistent 10-20 nm size range. To underscore their ability to harness visible light, the nanomaterials were excited at 380 nm, emitting visible light emission within the 400-450 nm range. The synthesized nanocomposites showcased outstanding adsorption and photocatalytic properties, achieving efficiency ranging from 80 % to 98 %, attributed to the synergistic interactions between the various components. These findings culminate in a confirmation of the research's success, validating the exceptional potential of these nanocomposites for various applications.
Collapse
Affiliation(s)
- Feziwe B. Mamba
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
- DSI/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein, 2028, South Africa
- Centre for Nanomaterials Science Research, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Bhekani S. Mbuli
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
- DSI/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein, 2028, South Africa
- Centre for Nanomaterials Science Research, University of Johannesburg, Doornfontein, 2028, South Africa
| | - James Ramontja
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
- DSI/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein, 2028, South Africa
- Centre for Nanomaterials Science Research, University of Johannesburg, Doornfontein, 2028, South Africa
| |
Collapse
|
3
|
Marimuthu G, Priyadharsini CI, Prabhu S, Viji A, Vignesh S, AlSalhi MS, Lee J, Palanisamy G. Silver-decorated SrTiO 3 nanoparticles for high-performance supercapacitors and effective remediation of hazardous pollutants. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:96. [PMID: 38376605 DOI: 10.1007/s10653-024-01875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/14/2024] [Indexed: 02/21/2024]
Abstract
SrTiO3/Ag nanocomposites were synthesized using a facile wet impregnation method, employing rigorous experimental techniques for comprehensive characterization. XRD, FTIR, UV, PL, FESEM, and HRTEM were meticulously utilized to elucidate their structural, functional, morphological, and optical properties. The electrochemical performance of the SrTiO3/Ag nanocomposite was rigorously assessed, revealing an impressive specific capacitance of 850 F/g at a current density of 1 A. Furthermore, the photocatalytic activity of the SrTiO3/Ag nanocomposite was rigorously examined using methylene blue (MB) dye, and the results were outstanding. After 120 min of UV irradiation, the nanocomposite exhibited an exceptional MB dye degradation efficiency exceeding 88%. The SrTiO3/Ag nanocomposite represents an exemplary catalyst in terms of efficiency, cost-effectiveness, environmental compatibility, and reusability. The electron and superoxide radicals play a chief role in the MB dye degradation process. The inclusion of Ag within the SrTiO3 matrix facilitated the formation of a conductive nano-network, ultimately resulting in superior capacitive and photocatalytic performance.
Collapse
Affiliation(s)
- G Marimuthu
- Department of Physics, Mahendra College of Engineering, Salem, Tamil Nadu, 636106, India
| | - C Indira Priyadharsini
- Department of Physics, Muthayammal College of Arts & Science, Rasipuram, Namakkal, Tamil Nadu, 637408, India.
| | - S Prabhu
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, 52900, Ramat Gan, Israel
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602 105, India
| | - A Viji
- Department of Physics, Kongunadu College of Engineering and Technology, Thottiyam, Tamil Nadu, 621215, India
| | - S Vignesh
- Department of Applied Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, 114511, Riyadh, Saudi Arabia
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, Republic of Korea
| | - Govindasamy Palanisamy
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
4
|
Kaur A, Kansal SK. Flower shaped Bi 2O 2.33/Bi 2WO 6 composite: An efficient photocatalyst for degradation of methylene blue from aqueous solution in direct solar light. CHEMOSPHERE 2024; 349:140862. [PMID: 38056720 DOI: 10.1016/j.chemosphere.2023.140862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Herein, we synthesized a Bi2O2.33/Bi2WO6 heterostructure as a platform for the degradation of methylene blue (MB) dye in an aqueous phase. The heterostructure was synthesized by facile ultrasonicated assisted solvothermal method. Various structural, morphological and other techniques such as XRD, FTIR, PL, EIS, UV-DRS, FESEM, HRTEM, XPS, EPR, TGA, BET surface area were used to analyze the characteristics of as-synthesized Bi2O2.33/Bi2WO6. The morphological studies revealed the deposition of Bi2O2.33 flowers in high density on Bi2WO6. Under solar irradiation, 98.6% degradation of MB was achieved in 190 min at optimal conditions (pH = 5, catalyst dose = 0.35 gL-1 and MB concentration = 10 mgL-1). The improved photocatalytic ability of composite in contrast to Bi2O2.33 and Bi2WO6 could be usually ascribed to the interface created between them, assisting the charge transfer. Based on the findings of radical trapping experiments, the charge transfer process over the photocatalyst was completely studied. Additionally, the present heterostructure demonstrated good recyclability over five runs. In nutshell, this study provided a facile approach for synthesizing solar light driven photocatalyst for degradation of methylene blue in aqueous phase and can further explored to be utilized for varied environmental remediation.
Collapse
Affiliation(s)
- Amandeep Kaur
- National Institute of Technical Teachers Training and Research, Sector 26, Chandigarh, 160019, India; Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, 160014, India
| | - Sushil Kumar Kansal
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
5
|
Panthi G, Park M. Graphitic Carbon Nitride/Zinc Oxide-Based Z-Scheme and S-Scheme Heterojunction Photocatalysts for the Photodegradation of Organic Pollutants. Int J Mol Sci 2023; 24:15021. [PMID: 37834469 PMCID: PMC10573564 DOI: 10.3390/ijms241915021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Graphitic carbon nitride (g-C3N4), a metal-free polymer semiconductor, has been recognized as an attractive photocatalytic material for environmental remediation because of its low band gap, high thermal and photostability, chemical inertness, non-toxicity, low cost, biocompatibility, and optical and electrical efficiency. However, g-C3N4 has been reported to suffer from many difficulties in photocatalytic applications, such as a low specific surface area, inadequate visible-light utilization, and a high charge recombination rate. To overcome these difficulties, the formation of g-C3N4 heterojunctions by coupling with metal oxides has triggered tremendous interest in recent years. In this regard, zinc oxide (ZnO) is being largely explored as a self-driven semiconductor photocatalyst to form heterojunctions with g-C3N4, as ZnO possesses unique and fascinating properties, including high quantum efficiency, high electron mobility, cost-effectiveness, environmental friendliness, and a simple synthetic procedure. The synergistic effect of its properties, such as adsorption and photogenerated charge separation, was found to enhance the photocatalytic activity of heterojunctions. Hence, this review aims to compile the strategies for fabricating g-C3N4/ZnO-based Z-scheme and S-scheme heterojunction photocatalytic systems with enhanced performance and overall stability for the photodegradation of organic pollutants. Furthermore, with reference to the reported system, the photocatalytic mechanism of g-C3N4/ZnO-based heterojunction photocatalysts and their charge-transfer pathways on the interface surface are highlighted.
Collapse
Affiliation(s)
- Gopal Panthi
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea
| |
Collapse
|
6
|
Afkari M, Masoudpanah SM, Hasheminiasari M, Alamolhoda S. Effects of iron oxide contents on photocatalytic performance of nanocomposites based on g-C 3N 4. Sci Rep 2023; 13:6203. [PMID: 37069182 PMCID: PMC10110598 DOI: 10.1038/s41598-023-33338-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
α-Fe2O3/Fe3O4/g-C3N4 nanocomposites were prepared in-situ by solution combustion as magnetically separable photocatalysts using ferric nitrate as oxidant, glycine as organic fuel, and g-C3N4. The effects of various amounts of iron oxides, on the magnetic, optical, and photocatalytic properties were explored by different characterization methods. The magnetite (Fe3O4) phase as ferrimagnetic material disappeared with the increase in ferric nitrate contents, leading to the decrease of magnetic properties. The bandgap energy decreased from 2.8 to 1.6 eV with the increase of the hematite (α-Fe2O3) phase.The photocatalytic results showed that the type and amount of iron oxides had a significant effect on the decolorization of methylene blue, rhodamine B and methyl orange dyes under visible-light irradiation. The activity of the nanocomposite sample containing 37 wt. % iron oxides was more effective than that of the pristine g-C3N4 sample to photodegrade the methylene blue, rhodamine B and methyl orange, respectively. Moreover, the nanocomposites exhibited a higher photocurrent density than that of the pristine g-C3N4, mainly due to their lower charge recombination rate.
Collapse
Affiliation(s)
- M Afkari
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - S M Masoudpanah
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - M Hasheminiasari
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
| | - S Alamolhoda
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| |
Collapse
|
7
|
Shi S, Jia M, Li M, Zhou S, Zhao Y, Zhong J, Dai D, Qiu J. ZnO@g-C3N4 S-scheme photocatalytic membrane with visible-light response and enhanced water treatment performance. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
8
|
Guz R, Regina Lopes Tiburtius E, Andrade Pessôa C. Association of adsorption and heterogeneous photocatalysis in the degradation of Tartrazine yellow dye with CuNb2O6 synthesized and immobilized on chitosan membranes. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
9
|
Photo-Oxidation of Organic Dye by Fe2O3 Nanoparticles: Catalyst, Electron Acceptor, and Polyurethane Membrane (PU-Fe2O3) Effects. JOURNAL OF NANOTECHNOLOGY 2023. [DOI: 10.1155/2023/1292762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
The textile industry’s discharges have long been regarded as severe water pollution. The photocatalytic degradation of dyes using semiconductors is one of the crucial methods. The present study efficiently used the mechanical method to synthesize Iron oxide Nanoparticles. XRD, FT-IR, UV-Vis DRS, and Raman analyses were performed to analyze the structural and optical. From the data provided by XRD and Raman data, we believed that the as-synthesized Iron oxide was pure hematite (α-Fe2O3) with a hexagonal structure. Additionally, the EDS results show that the synthesized material is pure. By adjusting specific parameters, including the dye concentration, the catalyst dosage, the pH, and the oxidizing agent such as H2O2 and K2S2O8, the degradation of eosin yellowish using Fe2O3 as a photocatalyst has been discussed. Additionally, the kinetics of eosin yellowish degradation has been studied. A study was also conducted using Fe2O3 nanoparticles attached to polyurethane polymer (PU) to investigate its photocatalytic activity on methylene blue, methyl orange, and indigo carmine. In 30 minutes, nearly 90% of the dyes had degraded. The total organic carbon (TOC) analysis confirmed this result.
Collapse
|
10
|
Hydrothermal Synthesis of Bimetallic (Zn, Co) Co-Doped Tungstate Nanocomposite with Direct Z-Scheme for Enhanced Photodegradation of Xylenol Orange. Catalysts 2023. [DOI: 10.3390/catal13020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
In the present study, pristine ZnWO4, CoWO4, and mixed metal Zn0.5Co0.5WO4 were synthesized through the hydrothermal process using a Teflon-lined autoclave at 180 ℃. The synthesized nanomaterials were characterized by various spectroscopic techniques, such as TEM, FTIR, UV–vis, XRD, and SEM-EDX-mapping to confirm the formation of nanocomposite material. The synthesized materials were explored as photocatalysts for the degradation of xylenol orange (XO) under a visible light source and a comparative study was explored to check the efficiency of the bimetallic co-doped nanocomposite to the pristine metal tungstate NPs. XRD analysis proved that reinforcement of Co2+ in ZnWO4 lattice results in a reduction in interplanar distance from 0.203 nm to 0.185 nm, which is reflected in its crystallite size, which reduced from 32 nm to 24 nm. Contraction in crystallite size reflects on the optical properties as the energy bandgap of ZnWO4 reduced from 3.49 eV to 3.33 eV in Zn0.5Co0.5WO4, which is due to the formation of a Z-scheme for charge transfer and enhancement in photocatalytic efficiency. The experimental results suggested that ZnWO4, CoWO4, and Zn0.5Co0.5WO4 NPs achieved a photocatalytic efficiency of 97.89%, 98.10%, and 98.77% towards XO in 120 min of visible solar light irradiation. The kinetics of photodegradation was best explained by pseudo-first-order kinetics and the values of apparent rate const (kapp) also supported the enhanced photocatalytic efficiency of mixed metal Zn0.5Co0.5WO4 NPs towards XO degradation.
Collapse
|
11
|
Zinc oxide nanoparticles: Biosynthesis, characterization, biological activity and photocatalytic degradation for tartrazine yellow dye. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Faisal M, Alam M, Ahmed J, Asiri AM, Algethami JS, Alkorbi A, Madkhali O, Aljabri MD, Rahman MM, Harraz FA. Electrochemical detection of nitrite (NO2) with PEDOT:PSS modified gold/PPy-C/carbon nitride nanocomposites by electrochemical approach. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
13
|
Akbarzadeh A, Khazani Y, Khaloo SS, Ghalkhani M. Highly effectual photocatalytic degradation of tartrazine by using Ag nanoparticles decorated on Zn-Cu-Cr layered double hydroxide@ 2D graphitic carbon nitride (C 3N 5). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12903-12915. [PMID: 36121628 DOI: 10.1007/s11356-022-23001-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Pollution of water resources is one of the main concerns of many countries. This issue originates from the entry of diverse pollutants, including dye compounds, into water sources. In this work, ternary Zn-Cu-Cr layered double hydroxides (LDH) supported on graphitic carbon nitride (g-C3N5) decorated by silver nanoparticles (C3N5-LDH-Ag) was first prepared. Application of various characterization techniques such as SEM, XRD, and FT-IR revealed that the synthesized nanocomposite was composed of Zn-Cu-Cr LDH nanoparticles, g-C3N5 nanosheets, and Ag nanoparticles. The prepared nanomaterials were employed for the photodegradation of tartrazine in aqueous solutions. It was found that the C3N5-LDH-Ag catalyst outperformed their pure g-C3N5, Zn-Cu-Cr LDH, and C3N5-LDH composite in photocatalytic degradation of tartrazine under visible light irradiation. Tartrazine (20 mg/L) can be entirely removed by 0.25 g/L C3N5-LDH-Ag photocatalyst under 1 h visible light irradiation (200 W) at pH 6 with a rapid degradation rate constant (k) that is 4.4, 3.9, and 2.6 times higher than that of pure C3N5, Zn-Cu-Cr LDH, and C3N5-LDH component, respectively. The formation of hydroxyl radicals on the surface of C3N5-LDH-Ag as the main active species was approved by the capturing experiment. The finding results approved the stability and reusability of C3N5-LDH-Ag in four photocatalytic degradation cycles. In general, our findings revealed that the synthesized nanocomposite could be employed as an efficient photocatalyst in environmental remediation.
Collapse
Affiliation(s)
- Abbas Akbarzadeh
- Water and Wastewater Research Center, Water Research Institute, Tehran, Iran
| | - Yeganeh Khazani
- Department of Nanotechnology, College of Science, Urmia University, Urmia, Iran
| | - Shokooh Sadat Khaloo
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Health, Safety, and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Ghalkhani
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
14
|
Farhan A, Arshad J, Rashid EU, Ahmad H, Nawaz S, Munawar J, Zdarta J, Jesionowski T, Bilal M. Metal ferrites-based nanocomposites and nanohybrids for photocatalytic water treatment and electrocatalytic water splitting. CHEMOSPHERE 2023; 310:136835. [PMID: 36243091 DOI: 10.1016/j.chemosphere.2022.136835] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/18/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Photocatalytic degradation is one of the most promising technologies available for removing a variety of synthetic and organic pollutants from the environmental matrices because of its high catalytic activity, reduced energy consumption, and low total cost. Due to its acceptable bandgap, broad light-harvesting efficiency, significant renewability, and stability, Fe2O3 has emerged as a fascinating material for the degradation of organic contaminants as well as numerous dyes. This study thoroughly reviewed the efficiency of Fe2O3-based nanocomposite and nanomaterials for water remediation. Iron oxide structure and various synthetic methods are briefly discussed. Additionally, the electrocatalytic application of Fe2O3-based nanocomposites, including oxygen evolution reaction, oxygen reduction reaction, hydrogen evolution reaction, and overall water splitting efficiency, was also highlighted to illustrate the great promise of these composites. Finally, the ongoing issues and future prospects are directed to fully reveal the standards of Fe2O3-based catalysts. This review is intended to disseminate knowledge for further research on the possible applications of Fe2O3 as a photocatalyst and electrocatalyst.
Collapse
Affiliation(s)
- Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Javeria Arshad
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Haroon Ahmad
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Junaid Munawar
- College of Chemistry, Beijing University of Chemical Technology, 100029, China
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695, Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695, Poznan, Poland.
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695, Poznan, Poland.
| |
Collapse
|
15
|
Synthesis of Highly Efficient (0D/1D) Z-Scheme CdS-NPs@ZnO-NRs Visible-Light-Driven Photo(electro)catalyst for PEC Oxygen Evolution Reaction and Removal of Tetracycline. Catalysts 2022. [DOI: 10.3390/catal12121601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Herein, we synthesized the cadmium sulfide nanoparticles (CdS-NPs) coated zinc oxide nanorods (ZnO-NRs) core-shell like CdS-NPs@ZnO-NRs heterojunction for photo(electro)chemical applications. The CdS-NPs and ZnO-NRs were synthesized through a simple hydrothermal path. The physicochemical and optoelectronic properties of the as-prepared catalysts are characterized by various spectroscopy techniques, such as FTIR, XRD, SEM, TEM, EDX, VB-XPS, DRS, and PL. The photocatalytic performances of the CdS-NPs@ZnO-NRs catalyst were evaluated by photodegradation of tetracycline (TC) in aqueous media under visible-light irradiation, which demonstrated 94.07 % of removal (k’ = 0.0307 min−1) within 90 min. On the other hand, the photoelectrochemical (PEC) water-oxidation/oxygen-evolution reaction (OER) was performed, which resulted in the photocurrent density of 3.002 mA/cm2 and overpotential (at 2 mA/cm2) of 171 mV (vs RHE) in 1.0 M KOH under AM 1.5G illumination. The reactive species scavenging experiment demonstrates the significant contributions of photogenerated holes towards TC removal. Furthermore, the Z-scheme CdS-NPs@ZnO-NRs core-shell heterojunction exhibits high efficiency, recyclability, and photostability, demonstrating that the CdS-NPs@ZnO-NRs is a robust photo(electro)catalyst for visible-light PEC applications.
Collapse
|
16
|
Maryam Shokrollahi, Daryanavard M, Zahedmoein M. Graphite-Like C3N4 Nanocatalysts Containing Ru, Ni, Co, Fe, Au, Ag, Cu or Zn for Photocatalytic Degradation of Organic Dyes. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622601027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Sahani S, Park SJ, Myung Y, Pham TH, Tung TT, Kim T. Enhanced Room-Temperature Ethanol Detection by Quasi 2D Nanosheets of an Exfoliated Polymeric Graphitized Carbon Nitride Composite-Based Patterned Sensor. ACS OMEGA 2022; 7:41905-41914. [PMID: 36440172 PMCID: PMC9685765 DOI: 10.1021/acsomega.2c02962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/26/2022] [Indexed: 05/17/2023]
Abstract
A novel room-temperature gas sensor composed of polymeric graphitic carbon nitride composite was fabricated and used for the detection of ethanol vapor under ambient conditions. Polymeric carbon nitride (PCN) microstructures composed of fluffy nanosheets were synthesized via a thermal polycondensation mechanism using melamine as the precursor, followed by vigorous chemical exfoliation. These sheet-like microstructures were employed as active materials in the form of composites, along with carbon paste consisting of graphite nanoplatelets and carbon black. The active sensing layer was fabricated on a PET sheet and assembled on an interdigitated gold electrode. The as-fabricated sensor exhibited excellent sensing efficiency (>100% response at 10 ppm) along with high selectivity and stability. In particular, for ultralow concentrations such as 1 ppm (>10% response), this resistive-based sensor exhibited a swift response time provided under ambient conditions. The exfoliated PCN composite sensor was found to be working with appreciable efficiency at moderate relative humidity (%) with the least fluctuation in response signals also demonstrating long-term stability for 30 days with consistent response signals.
Collapse
Affiliation(s)
- Shalini Sahani
- Department
of Materials Science and Engineering, Gachon
University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do13120, South Korea
| | - Seung Jun Park
- Department
of Materials Science and Engineering, Gachon
University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do13120, South Korea
| | - Yusik Myung
- Department
of Materials Science and Engineering, Gachon
University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do13120, South Korea
| | - Thi-Huong Pham
- Department
of Materials Science and Engineering, Gachon
University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do13120, South Korea
| | - Tran Thanh Tung
- School
of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA5005, Australia
| | - TaeYoung Kim
- Department
of Materials Science and Engineering, Gachon
University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do13120, South Korea
| |
Collapse
|
18
|
Lin H, Xiao Y, Geng A, Bi H, Xu X, Xu X, Zhu J. Research Progress on Graphitic Carbon Nitride/Metal Oxide Composites: Synthesis and Photocatalytic Applications. Int J Mol Sci 2022; 23:12979. [PMID: 36361768 PMCID: PMC9658189 DOI: 10.3390/ijms232112979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 12/31/2023] Open
Abstract
Although graphitic carbon nitride (g-C3N4) has been reported for several decades, it is still an active material at the present time owing to its amazing properties exhibited in many applications, including photocatalysis. With the rapid development of characterization techniques, in-depth exploration has been conducted to reveal and utilize the natural properties of g-C3N4 through modifications. Among these, the assembly of g-C3N4 with metal oxides is an effective strategy which can not only improve electron-hole separation efficiency by forming a polymer-inorganic heterojunction, but also compensate for the redox capabilities of g-C3N4 owing to the varied oxidation states of metal ions, enhancing its photocatalytic performance. Herein, we summarized the research progress on the synthesis of g-C3N4 and its coupling with single- or multiple-metal oxides, and its photocatalytic applications in energy production and environmental protection, including the splitting of water to hydrogen, the reduction of CO2 to valuable fuels, the degradation of organic pollutants and the disinfection of bacteria. At the end, challenges and prospects in the synthesis and photocatalytic application of g-C3N4-based composites are proposed and an outlook is given.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Junjiang Zhu
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
19
|
Leichtweis J, Welter N, Vieira Y, Silvestri S, Carissimi E. Use of the CuFe 2O 4/biochar composite to remove methylene blue, methyl orange and tartrazine dyes from wastewater using photo-Fenton process. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:907. [PMID: 36253651 DOI: 10.1007/s10661-022-10633-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
In this study, CuFe2O4 ferrite was supported on biochar produced from malt biomass residues as a photocatalyst for degradation of methylene blue (MB), methyl orange (MO), and tartrazine (TZ) dyes. XRD, FT-IR, and FE-SEM were used to characterize the crystallinity and morphology of the samples. The characterization showed that the ferrite was uniformly supported on the surface of the biochar, confirming the formation of the composite. Degradation tests showed that CuFe2O4 degraded approximately 50, 47, and 62% of MB, MO, and TZ dyes, respectively, after 60 min of reaction. On the other hand, the CuFe2O4/biochar composite showed a significant increase in dye degradation, ~ 100%, for all three dyes. This increase in degradation efficiency may be due to less agglomeration of supported particles and due to decreased recombination of electron/hole pairs. Thus, results showed that the photocatalyst composite produced in this study is an effective alternative for removing dyes from wastewater.
Collapse
Affiliation(s)
- Jandira Leichtweis
- Graduate Program in Environmental Engineering, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Nicoly Welter
- Graduate Program in Environmental Engineering, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Yasmin Vieira
- Graduate Program in Chemistry, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Siara Silvestri
- Graduate Program in Environmental Engineering, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Elvis Carissimi
- Graduate Program in Environmental Engineering, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|
20
|
Investigation of photoelectrocatalytic degradation mechanism of methylene blue by α-Fe2O3 nanorods array. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Enhanced artificial intelligence for electrochemical sensors in monitoring and removing of azo dyes and food colorant substances. Food Chem Toxicol 2022; 169:113398. [PMID: 36096291 DOI: 10.1016/j.fct.2022.113398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/11/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022]
Abstract
It is necessary to determine whether synthetic dyes are present in food since their excessive use has detrimental effects on human health. For the simultaneous assessment of tartrazine and Patent Blue V, a novel electrochemical sensing platform was developed. As a result, two artificial azo colorants (Tartrazine and Patent Blue V) with toxic azo groups (-NN-) and other carcinogenic aromatic ring structures were examined. With a low limit of detection of 0.06 μM, a broad linear concentration range 0.09μM to 950μM, and a respectable recovery, scanning electron microscopy (SEM) was able to reveal the excellent sensing performance of the suggested electrode for patent blue V. The electrochemical performance of an electrode can be characterized using cyclic and differential pulse voltammetry, and electrochemical impedance spectroscopy. Moreover, the classification model was created by applying binary classification assessment using enhanced artificial intelligence comprises of support vector machine (SVM) and Genetic Algorithm (GA), respectively, a support vector machine and a genetic algorithm, which was then validated using the 50 dyes test set. The best binary logistic regression model has an accuracy of 83.2% and 81.1%, respectively, while the best SVM model has an accuracy of 90.3% for the training group of samples and 81.1% for the test group (RMSE = 0.644, R2 = 0.873, C = 205.41, and = 5.992). According to the findings, Cu-BTC MOF (copper (II)-benzene-1,3,5-tricarboxylate) has a crystal structure and is tightly packed with hierarchically porous nanomaterials, with each particle's edge measuring between 20 and 37 nm. The suggested electrochemical sensor's analytical performance is suitable for foods like jellies, condiments, soft drinks and candies.
Collapse
|
22
|
Muthukumar C, Iype E, Raju K, Pulletikurthi S, Prakash Kumar BG. Sunlight assisted photocatalytic degradation using the RSM-CCD optimized sustainable photocatalyst synthesized from galvanic wastewater. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Mahesh K, Zhao ZQ, Liu HY, Lai KT, Lai EHH, Lin HP, Chiang YC. Highly efficient strategy for photocatalytic tooth bleaching using SiO2/MgO/Fe2O3 nanocomposite spheres. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Guo RT, Wang J, Bi ZX, Chen X, Hu X, Pan WG. Recent advances and perspectives of g-C 3N 4-based materials for photocatalytic dyes degradation. CHEMOSPHERE 2022; 295:133834. [PMID: 35124079 DOI: 10.1016/j.chemosphere.2022.133834] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Photocatalytic degradation technology is regarded as a promising technology for dye-contained wastewater treatment due to its superior efficiency and recycling. The key to the implementation of photocatalytic degradation technology is the selection of sunlight-active photocatalyst. Graphitic carbon nitride (g-C3N4) photocatalyst has been put into a lot of research in the field of organic pollutant degradation because of its low cost, suitable electronic structure and high chemical stability. In this perspective review, we comprehensively discuss the recent advance of photocatalytic dyes degradation over g-C3N4-based materials. The properties, structure and preparation methods of g-C3N4 are briefly introduced. Furthermore, the progress in improving the degradation efficiency of g-C3N4-based photocatalyst is highlighted in the article. The possible pathways and different active species for dyes decomposition are also summarized. We expect this review can provide instructive application of g-C3N4-based catalysts for environmental remediation.
Collapse
Affiliation(s)
- Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China; Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, China.
| | - Juan Wang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China
| | - Zhe-Xu Bi
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China
| | - Xin Chen
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China
| | - Xing Hu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China; Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, China
| |
Collapse
|
25
|
Elavarasan M, Yang W, Velmurugan S, Chen JN, Chang YT, Yang TCK, Yokoi T. In-situ infrared investigation of m-TiO2/α-Fe2O3 photocatalysts and tracing of intermediates in photocatalytic hydrogenation of CO2 to methanol. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Madona J, Sridevi C. Surfactant assisted hydrothermal synthesis of MgO/g-C3N4 heterojunction nanocomposite for enhanced solar photocatalysis and antimicrobial activities. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Das S, Chowdhury A. Recent advancements of g-C 3N 4-based magnetic photocatalysts towards the degradation of organic pollutants: a review. NANOTECHNOLOGY 2021; 33:072004. [PMID: 34731840 DOI: 10.1088/1361-6528/ac3614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Heterogeneous photocatalysis premised on advanced oxidation processes has witnessed a broad application perspective, including water purification and environmental remediation. In particular, the graphitic carbon nitride (g-C3N4), an earth-abundant metal-free conjugated polymer, has acquired extensive application scope and interdisciplinary consideration owing to its outstanding structural and physicochemical properties. However, several issues such as the high recombination rate of the photo-generated electron-hole pairs, smaller specific surface area, and lower electrical conductivity curtail the catalytic efficacy of bulk g-C3N4. Another challenging task is separating the catalyst from the reaction medium, limiting their reusability and practical applications. Therefore, several methodologies are adopted strategically to tackle these issues. Attention is being paid, especially to the magnetic nanocomposites (NCs) based catalysts to enhance efficiency and proficient reusability property. This review summarizes the latest progress related to the design and development of magnetic g-C3N4-based NCs and their utilization in photocatalytic systems. The usefulness of the semiconductor heterojunctions on the catalytic activity, working mechanism, and degradation of pollutants are discussed in detail. The major challenges and prospects of using magnetic g-C3N4-based NCs for photocatalytic applications are highlighted in this report.
Collapse
Affiliation(s)
- Suma Das
- Organic Electronics & Sensor Laboratory, Department of Physics, National Institute of Technology Silchar, Assam 788010, India
| | - Avijit Chowdhury
- Organic Electronics & Sensor Laboratory, Department of Physics, National Institute of Technology Silchar, Assam 788010, India
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
28
|
Liu X, Zhang T, Zhang L, Li Y, Zhang J, Du Y, Xia D, Lin K. In‐situ Construction of Ultra‐Thin Graphitic Carbon Nitride Supported Lanthanum Oxide Nanosheet Heterostructures with Enhanced Photocatalytic Hydrogen Evolution Activity. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xing Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Tingting Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Lu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Yudong Li
- Key Laboratory of Bio-based Material Science & Technology Northeast Forestry University) Ministry of Education Harbin 150040 China
| | - Jian Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Debin Xia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Kaifeng Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
29
|
Advances in the Application of Nanocatalysts in Photocatalytic Processes for the Treatment of Food Dyes: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su132111676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of food additives (such as dyes, which improve the appearance of the products) has become more prominent, due to the rapid population growth and the increase in demand for beverages and processed foods. The dyes are usually found in effluents that are discharged into the environment without previous treatment; this promotes mass contamination and alters the aquatic environment. In recent years, advanced oxidation processes (AOPs) have proven to be effective technologies used for wastewater treatment through the destruction of the total organic content of toxic contaminants, including food dyes. Studies have shown that the introduction of catalysts in AOPs improve treatment efficiency (i.e., complete decomposition without secondary contamination). The present review offers a quick reference for researchers, regarding the treatment of wastewater containing food dyes and the different types of AOPs, with different catalyst and nanocatalyst materials obtained from traditional and green chemical syntheses.
Collapse
|
30
|
Lai YJ, Lee DJ. Solid mediator Z-scheme heterojunction photocatalysis for pollutant oxidation in water: Principles and synthesis perspectives. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.05.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Balu S, Chen YL, Juang RC, Yang TCK, Juan JC. Morphology-Controlled Synthesis of α-Fe 2O 3 Nanocrystals Impregnated on g-C 3N 4-SO 3H with Ultrafast Charge Separation for Photoreduction of Cr (VI) Under Visible Light. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115491. [PMID: 32911336 DOI: 10.1016/j.envpol.2020.115491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Surface functionalization and shape modifications are the key strategies being utilized to overcome the limitations of semiconductors in advanced oxidation processes (AOP). Herein, the uniform α-Fe2O3 nanocrystals (α-Fe2O3-NCs) were effectively synthesized via a simple solvothermal route. Meanwhile, the sulfonic acid functionalization (SAF) and the impregnation of α-Fe2O3-NCs on g-C3N4 (α-Fe2O3-NCs@CN-SAF) were achieved through complete solvent evaporation technique. The surface functionalization of the sulfonic acid group on g-C3N4 accelerates the faster migration of electrons to the surface owing to robust electronegativity. The incorporation of α-Fe2O3-NCs with CN-SAF significantly enhances the optoelectronic properties, ultrafast spatial charge separation, and rapid charge transportation. The α-Fe2O3-HPs@CN-SAF and α-Fe2O3-NPs@CN-SAF nanocomposites attained 97.41% and 93.64% of Cr (VI) photoreduction in 10 min, respectively. The photocatalytic efficiency of α-Fe2O3-NCs@CN-SAF nanocomposite is 2.4 and 2.1 times higher than that of pure g-C3N4 and α-Fe2O3, respectively. Besides, the XPS, PEC and recycling experiments confirm the excellent photo-induced charge separation via Z-scheme heterostructure and cyclic stability of α-Fe2O3-NCs@CN-SAF nanocomposites.
Collapse
Affiliation(s)
- Sridharan Balu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan, ROC
| | - Yi-Lun Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan, ROC
| | - R-C Juang
- Green Energy and Environmental Laboratories, Industrial Technology Research Institute, Hsinchu, 300, Taiwan, ROC
| | - Thomas C-K Yang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan, ROC; Precision Analysis and Materials Research Center, National Taipei University of Technology, Taipei, 106, Taiwan, ROC.
| | - Joon Ching Juan
- Nanotechnology and Catalysis Research Center (NANOCAT), University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
32
|
Hwa KY, Ganguly A, Tata SKS. Influence of temperature variation on spinel-structure MgFe2O4 anchored on reduced graphene oxide for electrochemical detection of 4-cyanophenol. Mikrochim Acta 2020; 187:633. [DOI: 10.1007/s00604-020-04613-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/20/2020] [Indexed: 01/09/2023]
|
33
|
Three-dimensional P-doped porous g-C3N4 nanosheets as an efficient metal-free photocatalyst for visible-light photocatalytic degradation of Rhodamine B model pollutant. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.09.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
34
|
Hitam C, Jalil A, Izan S, Azami M, Hassim M, Chanlek N. The unforeseen relationship of Fe2O3 and ZnO on fibrous silica KCC-1 catalyst for fabricated Z-scheme extractive-photooxidative desulphurization. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.07.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Choi JH, Hong JA, Son YR, Wang J, Kim HS, Lee H, Lee H. Comparison of Enhanced Photocatalytic Degradation Efficiency and Toxicity Evaluations of CeO 2 Nanoparticles Synthesized Through Double-Modulation. NANOMATERIALS 2020; 10:nano10081543. [PMID: 32781774 PMCID: PMC7466517 DOI: 10.3390/nano10081543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 01/03/2023]
Abstract
We demonstrated that Fe/Cr doped and pH-modified CeO2 nanoparticles (NPs) exhibit enhanced photocatalytic performance as compared to bare CeO2 NPs, using photocatalytic degradation. To assess the toxicity level of these double-modified CeO2 NPs on the human skin, they were introduced into HaCaT cells. The results of our conventional cellular toxicity assays (neutral red uptake and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide for assays) indicated that Cr@CeOx NPs prompt severe negative effects on the viability of human cells. Moreover, the results obtained by scanning transmission X-ray microscopy and bio-transmission electron microscope analysis showed that most of the NPs were localized outside the nucleus of the cells. Thus, serious genetic toxicity was unlikely. Overall, this study highlights the need to prevent the development of Cr@CeOx NP toxicity. Moreover, further research should aim to improve the photocatalytic properties and activity of these NPs while accounting for their stability issues.
Collapse
Affiliation(s)
- Jang Hyun Choi
- Department of Biological Sciences, College of Natural Science, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea;
| | - Jung-A Hong
- Department of Chemistry, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Ye Rim Son
- Department of Chemistry, Pukyong National University, Busan 48513, Korea;
| | - Jian Wang
- Canadian Light Source and University of Saskatchewan, 44 Innovation Boulevard, Saskatoon, SK S7N 2 V3, Canada;
| | - Hyun Sung Kim
- Department of Chemistry, Pukyong National University, Busan 48513, Korea;
- Correspondence: (H.S.K.); (H.L.); (H.L.); Tel.: +82-2-710-9409 (Hangil Lee)
| | - Hansol Lee
- Department of Biological Sciences, College of Natural Science, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea;
- Correspondence: (H.S.K.); (H.L.); (H.L.); Tel.: +82-2-710-9409 (Hangil Lee)
| | - Hangil Lee
- Department of Chemistry, Sookmyung Women’s University, Seoul 04310, Korea;
- Correspondence: (H.S.K.); (H.L.); (H.L.); Tel.: +82-2-710-9409 (Hangil Lee)
| |
Collapse
|
36
|
Parvari R, Ghorbani-Shahna F, Bahrami A, Azizian S, Assari MJ, Farhadian M. A novel core-shell structured α-Fe2O3/Cu/g-C3N4 nanocomposite for continuous photocatalytic removal of air ethylbenzene under visible light irradiation. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112643] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
37
|
Askari N, Beheshti M, Mowla D, Farhadian M. Fabrication of CuWO 4/Bi 2S 3/ZIF67 MOF: A novel double Z-scheme ternary heterostructure for boosting visible-light photodegradation of antibiotics. CHEMOSPHERE 2020; 251:126453. [PMID: 32443224 DOI: 10.1016/j.chemosphere.2020.126453] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/25/2020] [Accepted: 03/07/2020] [Indexed: 06/11/2023]
Abstract
A novel double Z-scheme CuWO4/Bi2S3/ZIF67 ternary heterostructure was synthesized through hydrothermal method. The catalysts were characterized by XRD, FTIR, SEM, EDX, BET, TEM, PL, and UV-vis DRS analyses. The degradations of Metronidazole (MTZ) and Cephalexin (CFX) antibiotics by ternary catalyst were investigated in the batch and continuous slurry photoreactor under LED illumination. The ternary heterostructure exhibited a remarkable improvement in photoactivity compared with CuWO4/Bi2S3, and pristine ZIF67. Indeed, higher surface area, photo-stability, bandgap suppressing as well as better charge separation based on the dual Z-scheme structure caused the enhancement. The optimum values of operating parameters were obtained by the central composite design as: catalyst dose = 0.3 g/L, pH = 7, illumination time = 80 min, and 20 ppm initial concentration of antibiotic. The maximum degradation efficiencies by the new ternary heterostructure were 95.6% and 90.1%, respectively for MTZ and CFX at optimum conditions in the continuous flow mode. Maximum total organic carbon (TOC) removal rates were 83.2% and 74% for MTZ and CFX, respectively. The degradations by ternary composite followed the first-order kinetic, by reaction rate of 9 times, 5.5 times, and 4 times higher than that obtained by Bi2S3, ZIF67, and the binary CuWO4/Bi2S3, respectively. The influences of temperature and light intensity were explored, revealing 25 °C and 400 W/m2 as the optimum values. The new ternary heterostructure demonstrated excellent reusability and chemical stability after six cycles. The dominant active species were explored by trapping tests, indicating OH. free radicals as the most primary oxidant.
Collapse
Affiliation(s)
- Najmeh Askari
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Masoud Beheshti
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.
| | - Dariush Mowla
- Environmental Research Center in Petroleum and Petrochemical Industries, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran.
| | - Mehrdad Farhadian
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| |
Collapse
|
38
|
El-Fawal EM, Younis SA, Moustafa YM, Serp P. Preparation of solar-enhanced AlZnO@carbon nano-substrates for remediation of textile wastewaters. J Environ Sci (China) 2020; 92:52-68. [PMID: 32430133 DOI: 10.1016/j.jes.2020.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/28/2020] [Accepted: 02/01/2020] [Indexed: 06/11/2023]
Abstract
Photoactive aluminum doped ZnO (AlZnO) was synthesized by sol-gel method. After that, AlZnO photocatalyst was deposited on five carbon-based materials (CBMs) using ultrasonic route followed by solid-state mixing using ball mill. The CBMs used were polyaniline (PANI), carbon nitride (CN), carbon nanotubes (CNT), graphene (G), and carbon nanofibers (CNF). The crystal phases, elemental compositions, morphological, and optical properties of the AlZnO@CBMs composites were investigated. Experimental results revealed that two of AlZnO@CBMs composites exhibited superior bleaching efficiency (100% removal) and photocatalytic stability (three cycles) for 50 μmol/L Methylene Blue (MB) contaminated water after 60 min irradiation in visible light at pH 6.5, 0.7% H2O2, and 5 g/L inorganic salts. Under optimum conditions, AlZnO@CBMs nanocomposites were employed for the treatment of mixed dyestuffs composed of MB, Methyl Orange (MO), Astrazone Blue FRR (BB 69), and Rhodamine B (RhB) dyes under dark, ultraviolet, visible, and direct sunlight. For mixed dyestuffs, the AlZnO@G achieved the highest dye sorption capacity (60.91 μmol dye stuffs/g) with kinetic rate 8.22 × 10-3 min-1 in 90 min via multi-layer physisorption (Freundlich isotherm) on graphene sheet. In additions, AlZnO@CN offered the highest photo-kinetic rate (Kphoto) of ~54.1 × 10-3 min-1 (93.8% after 60 min) under direct sunlight. Furthermore, the selective radical trapping experiment confirmed that the holes and oxidative superoxide radicals are crucial on dyes photodegradation pathway. Owing to their superior performance, AlZnO@G and AlZnO@CN nanocomposites can offer an effective in-situ solar-assisted adsorption/photocatalytic remediation of textile wastewater effluents.
Collapse
Affiliation(s)
- Esraa M El-Fawal
- Central Laboratories, Analysis and Evaluation Department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt.
| | - Sherif A Younis
- Central Laboratories, Analysis and Evaluation Department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt.
| | - Yasser M Moustafa
- Central Laboratories, Analysis and Evaluation Department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Philippe Serp
- Laboratoire de Chimie de Coordination (LCC), Unité Propre de Recherche (UPR) Du Centre National de La Recherche Scientifique (CNRS) 8241, Composante de L'Ecole Nationale D'Ingénieurs en Arts Chimiques et Technologiques (ENSIACET), Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique (INP)-LCC, 4 Allée Emile Monso, 31030, Toulouse Cedex 4, France
| |
Collapse
|
39
|
Cui K, Wang X, Tai M, Gao B, Su B. Facile synthesis of intercalated Z-scheme Bi2O4/g-C3N4 composite photocatalysts for effective removal of 2-Mercaptobenzothiazole: Degradation pathways and mechanism. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
40
|
High photocatalytic activity of magnetically separable ZnO and Ag/ZnO supported on Mg-ferrite nanoparticles. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
|
42
|
Hitam CNC, Jalil AA. A review on exploration of Fe 2O 3 photocatalyst towards degradation of dyes and organic contaminants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 258:110050. [PMID: 31929077 DOI: 10.1016/j.jenvman.2019.110050] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/11/2019] [Accepted: 12/28/2019] [Indexed: 05/20/2023]
Abstract
Photocatalytic degradation is among the promising technology for removal of various dyes and organic contaminants from environment owing to its excellent catalytic activity, low energy utilization, and low cost. As one of potential photocatalysts, Fe2O3 has emerged as an important material for degradation of numerous dyes and organic contaminants caused by its tolerable band gap, wide harvesting of visible light, good stability and recyclability. The present review thoroughly summarized the classification, synthesis route of Fe2O3 with different morphologies, and several modifications of Fe2O3 for improved photocatalytic performance. These include the incorporation with supporting materials, formation of heterojunction with other semiconductor photocatalysts, as well as the fabrication of Z-scheme. Explicitly, the other photocatalytic applications of Fe2O3, including for removal of heavy metals, reduction of CO2, evolution of H2, and N2 fixation are also deliberately discussed to further highlight the huge potential of this catalyst. Moreover, the prospects and future challenges are also comprised to expose the unscrutinized criteria of Fe2O3 photocatalyst. This review aims to contribute a knowledge transfer for providing more information on the potential of Fe2O3 photocatalyst. In the meantime, it might give an idea for utilization of this photocatalyst in other environmental remediation application.
Collapse
Affiliation(s)
- C N C Hitam
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia.
| |
Collapse
|
43
|
Atchudan R, Edison TNJI, Mani S, Perumal S, Vinodh R, Thirunavukkarasu S, Lee YR. Facile synthesis of a novel nitrogen-doped carbon dot adorned zinc oxide composite for photodegradation of methylene blue. Dalton Trans 2020; 49:17725-17736. [DOI: 10.1039/d0dt02756a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitrogen-doped carbon dot decorated zinc oxide nanoparticles were successfully fabricated by an economical wet-impregnation method and used as a photocatalyst for the degradation of aqueous methylene blue dye under UV-light at room temperature.
Collapse
Affiliation(s)
- Raji Atchudan
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan 38541
- Republic of Korea
| | | | - Shanmugam Mani
- Department of Science and Humanities
- Institute of Aeronautical Engineering
- Hyderabad 500043
- India
| | - Suguna Perumal
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan 38541
- Republic of Korea
- Department of Applied Chemistry
| | - Rajangam Vinodh
- School of Electrical and Computer Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Somanathan Thirunavukkarasu
- Department of Chemistry
- School of Basic Sciences
- Vels Institute of Science
- Technology & Advanced Studies (VISTAS)
- Chennai – 600117
| | - Yong Rok Lee
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan 38541
- Republic of Korea
| |
Collapse
|
44
|
Zada A, Ali N, Ateeq M, Huerta‐Flores AM, Hussain Z, Shaheen S, Ullah M, Ali S, Khan I, Ali W, Shah MIA, Khan W. Surface plasmon resonance excited electron induction greatly extends H
2
evolution and pollutant degradation activity of g‐C
3
N
4
under visible light irradiation. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Amir Zada
- Department of ChemistryAbdul Wali Khan University Mardan Pakistan
- Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials ScienceInternational Joint Research Center for Catalytic Technology Harbin China
| | - Nauman Ali
- Institute of Chemical SciencesUniversity of Peshawar Peshawar Pakistan
| | - Muhammad Ateeq
- Department of ChemistryAbdul Wali Khan University Mardan Pakistan
| | - Ali M. Huerta‐Flores
- Facultad de Ingeniería Civil, Departamento de Ecomateriales y EnergíaUniversidad Autónoma de Nuevo León (UANL) San Nicolás de los Garza Nuevo León, C.P. Mexico
| | - Zahid Hussain
- Department of ChemistryAbdul Wali Khan University Mardan Pakistan
| | - Shabana Shaheen
- Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials ScienceInternational Joint Research Center for Catalytic Technology Harbin China
| | - Mohib Ullah
- Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials ScienceInternational Joint Research Center for Catalytic Technology Harbin China
| | - Sharafat Ali
- Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials ScienceInternational Joint Research Center for Catalytic Technology Harbin China
| | - Imran Khan
- Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials ScienceInternational Joint Research Center for Catalytic Technology Harbin China
| | - Wajid Ali
- Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials ScienceInternational Joint Research Center for Catalytic Technology Harbin China
| | | | - Waliullah Khan
- Department of ChemistryAbdul Wali Khan University Mardan Pakistan
| |
Collapse
|
45
|
Munusamy G, Mani R, Varadharajan K, Narasimhan S, Munusamy C, Chandrasekaran B. α-Fe2O3@carbon core–shell nanostructure for luminescent upconversion and photocatalytic degradation of methyl orange. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03986-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|