1
|
Yu X, Yue R, Yang S, Fu C, Shu J, Shen L. High-efficient electrooxidation of ethylene glycol and ethanol on PdSn alloy loaded by versatile poly(3,4-ethylenedioxythiophene). J Colloid Interface Sci 2024; 670:473-485. [PMID: 38772263 DOI: 10.1016/j.jcis.2024.05.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Developing a novel catalyst with lower noble-metal loading and higher catalytic efficiency is significant for promoting the widespread application of direct alcohol fuel cells (DAFCs). In this work, poly(3,4-ethylenedioxythiophene) (PEDOT) supported the PdSn alloy (PdSn/PEDOT) were simply synthesized and their electrocatalytic performance toward the oxidation of ethylene glycol and ethanol (EGOR and EOR) were investigated in alkaline media, respectively. In comparison with other control catalysts, the optimized Pd4Sn6/PEDOT catalyst exhibits the highest mass activity (7125/4166 mA mgPd-1) and specific activity (26/15 mA cm-2) towards EGOR/EOR. The mass activity of Pd4Sn6/PEDOT for EGOR and EOR are 11.9 and 10.9 times higher than commercial Pd/C, respectively. Moreover, chronoamperometry (CA) and successive cyclic voltammetry (CV) tests show that the CO resistance ability and durability of the Pd4Sn6/PEDOT catalyst were superior to Pd4Sn6, Pd/PEDOT and commercial Pd/C catalysts, which can be attributed to the d-band center of Pd can be effectively downshifted and the interface strain effect between electrons caused by the conjugated structure between PEDOT groups. This work provides an effective strategy for the development of highly efficient anode catalysts of DAFCs.
Collapse
Affiliation(s)
- Xiuqing Yu
- College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Ruirui Yue
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Shiyao Yang
- College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Changqing Fu
- Institute of Organic Functional Molecules, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Jinbing Shu
- College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Liang Shen
- College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| |
Collapse
|
2
|
Li Q, Zhou X, Lu M, Pan S, Ajmal S, Xiang D, Sun Z, Zhu M, Li P. In-situ synthesis of carbon-supported ultrafine trimetallic PdSnAg nanoparticles for highly efficient alcohols electrocatalysis. J Colloid Interface Sci 2024; 653:1264-1271. [PMID: 37797502 DOI: 10.1016/j.jcis.2023.09.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
Designing functional and durable electrocatalysts for the oxidation of alcohols plays a significant role for the development of direct alcohol fuel cells (DAFCs). Herein, carbon-supported ultrafine PdSnAg nanoparticles with an average size of 3.27 nm (denoted as PdSnAg/C NPs) have been synthesized for alcohols electrocatalysis. The smaller particle size means a higher proportion of surface exposed atoms for catalyzing the reaction followed by high catalytic performance. The multimetallic nanoalloys have potential electronic structure adjustment and synergistic effect between different components. The incorporation of oxophilic metals Sn and Ag facilitates the removal of intermediates produced during the oxidation of alcohols. The PdSnAg/C NPs exhibit a remarkable electrocatalytic performance for ethylene glycol oxidation reaction (EGOR) with the mass activity of 12.3 A mgPd-1, which is 15.6, 2.50 and 2.60 times higher than those of commercial Pd/C (0.790 A mgPd-1), PdSn/C NPs (4.85 A mgPd-1) and PdAg/C NPs (4.69 A mgPd-1), respectively. Meanwhile, PdSnAg/C NPs show superior mass activities of 10.6 A mgPd-1 and 6.65 A mgPd-1 for ethanol oxidation reaction (EOR) and glycerol oxidation reaction (GOR), which are 14.3 and 8.30 times superior than the commercial Pd/C, respectively. The exceptional mass activity promises the PdSnAg/C NPs to be the potential Pd-based catalysts for alcohols electrocatalysis.
Collapse
Affiliation(s)
- Qiuyu Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, PR China
| | - Xiaoxing Zhou
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, PR China
| | - Maoni Lu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, PR China
| | - Shiqi Pan
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, PR China
| | - Sara Ajmal
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, PR China
| | - Dong Xiang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, PR China
| | - Zhenjie Sun
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, PR China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, PR China
| | - Peng Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, PR China.
| |
Collapse
|
3
|
Kamyabi MA, Jadali S, Alizadeh T. Ethanol Electrooxidation on Nickel Foam Arrayed with Templated PdSn; From Catalyst Fabrication to Electrooxidation Dominance Route. ChemElectroChem 2022. [DOI: 10.1002/celc.202200914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mohammad Ali Kamyabi
- Electroanalytical Chemistry Laboratory Department of Chemistry Faculty of Science University of Zanjan 45371-38791 Zanjan Iran
| | - Salma Jadali
- Electroanalytical Chemistry Laboratory Department of Chemistry Faculty of Science University of Zanjan 45371-38791 Zanjan Iran
| | - Taher Alizadeh
- Department of Analytical Chemistry Faculty of Chemistry University College of Science University of Tehran P.O. Box 14155–6455 Tehran Iran
| |
Collapse
|
4
|
3D bismuth/tin dual-doped palladium modified prism-folding layered graphene/MOF-74 composites as highly active electrocatalyst for ethylene glycol electrooxidation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Jebril S, Fdhila A, Dridi C. Nanoengineering of eco-friendly silver nanoparticles using five different plant extracts and development of cost-effective phenol nanosensor. Sci Rep 2021; 11:22060. [PMID: 34764386 PMCID: PMC8586347 DOI: 10.1038/s41598-021-01609-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
The production of environmentally friendly silver nanoparticles (AgNPs) has aroused the interest of the scientific community due to their wide applications mainly in the field of environmental pollution detection and water quality monitoring. Here, for the first time, five plant leaf extracts were used for the synthesis of AgNPs such as Basil, Geranium, Eucalyptus, Melia, and Ruta by a simple and eco-friendly method. Stable AgNPs were obtained by adding a silver nitrate (AgNO3) solution with the leaves extract as reducers, stabilizers and cappers. Only, within ten minutes of reaction, the yellow mixture changed to brown due to the reduction of Ag+ ions to Ag atoms. The optical, structural, and morphology characteristics of synthesized AgNPs were determined using a full technique like UV-visible spectroscopy, FTIR spectrum, XRD, EDX spectroscopy, and the SEM. Thus, Melia azedarach was found to exhibit smaller nanoparticles (AgNPs-M), which would be interesting for electrochemical application. So, a highly sensitive electrochemical sensor based on AgNPs-M modified GCE for phenol determination in water samples was developed, indicating that the AgNPs-M displayed good electrocatalytic activity. The developed sensor showed good sensing performances: a high sensitivity, a low LOD of 0.42 µM and good stability with a lifetime of about one month, as well as a good selectivity towards BPA and CC (with a deviation less than 10%) especially for nanoplastics analysis in the water contained in plastics bottles. The obtained results are repeatable and reproducible with RSDs of 5.49% and 3.18% respectively. Besides, our developed sensor was successfully applied for the determination of phenol in tap and mineral water samples. The proposed new approach is highly recommended to develop a simple, cost effective, ecofriendly, and highly sensitive sensor for the electrochemical detection of phenol which can further broaden the applications of green silver NPs.
Collapse
Affiliation(s)
- Siwar Jebril
- NANOMISENE Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology (CRMN), Sousse, Tunisia ,grid.7900.e0000 0001 2114 4570High School of Sciences and Technology of Hammam Sousse 4011, University of Sousse, Sousse, Tunisia
| | - Alaeddine Fdhila
- NANOMISENE Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology (CRMN), Sousse, Tunisia ,grid.7900.e0000 0001 2114 4570High School of Sciences and Technology of Hammam Sousse 4011, University of Sousse, Sousse, Tunisia
| | - Chérif Dridi
- NANOMISENE Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology (CRMN), Sousse, Tunisia.
| |
Collapse
|
6
|
You H, Gao F, Wang C, Song T, Li J, Wang X, Zhang Y, Du Y. Morphology Control Endows Palladium‐Indium Nanocatalysts with High Catalytic Performance for Alcohol Oxidation. ChemElectroChem 2021. [DOI: 10.1002/celc.202100864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Huaming You
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Tongxin Song
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Xiaomei Wang
- Research Center for Green Printing Nanophotonic Materials Jiangsu Key Laboratory for Environment Functional Materials School of Materials Science and Engineering Suzhou University of Science and Technology Suzhou 215009 P. R. China
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
7
|
Jebril S, Sierra-Padilla A, García-Guzmán JJ, Cubillana-Aguilera L, Palacios-Santander JM, Dridi C. Highly sensitive nanoplatform based on green gold sononanoparticles for phenol determination in olive oil. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01544-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Song T, Gao F, Guo S, Zhang Y, Li S, You H, Du Y. A review of the role and mechanism of surfactants in the morphology control of metal nanoparticles. NANOSCALE 2021; 13:3895-3910. [PMID: 33576356 DOI: 10.1039/d0nr07339c] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although great progress has been made in the synthesis of metal nanoparticles, good repeatability and accurate predictability are still difficult to achieve. This difficulty can be attributed to the synthetic method based primarily on observation and subjective experience, and the role of many surfactants remains unclear. It should be noted that surfactants play an important role in the synthetic process. Understanding their function and mechanism in the synthetic process is a prerequisite for the rational design of nanocatalysts with ideal morphology and performance. In this review article, the function of surfactants is introduced first, and then the mechanism of action of surfactants in controlling the morphology of nanoparticles is discussed according to the types of surfactants, and the promoting and sealing effects of surfactants on the crystal surface is revealed. The relationship between surfactants and the morphology structure of nanoparticles is studied. The removal methods of surfactants are discussed, and the existing problems in the current development strategy are summarized. Finally, the application of surfactants in controlling the morphology of metal nanocrystals is prospected. It is hoped that the review can open up new avenues for the synthesis of nanocrystals.
Collapse
Affiliation(s)
- Tongxin Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Siyu Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Shujin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Huaming You
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| |
Collapse
|
9
|
Gao F, Zhang Y, Song T, Wang C, Chen C, Wang J, Guo J, Du Y. Trimetallic platinum-nickel-palladium nanorods with abundant bumps as robust catalysts for methanol electrooxidation. J Colloid Interface Sci 2020; 561:512-518. [DOI: 10.1016/j.jcis.2019.11.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/25/2019] [Accepted: 11/07/2019] [Indexed: 12/26/2022]
|
10
|
Song T, Gao F, Jin L, Zhang Y, Wang C, Li S, Chen C, Du Y. From bimetallic PdCu nanowires to ternary PdCu-SnO 2 nanowires: Interface control for efficient ethanol electrooxidation. J Colloid Interface Sci 2019; 560:802-810. [PMID: 31711664 DOI: 10.1016/j.jcis.2019.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
At present, although a large number of palladium-based nanowire electrocatalysts have been prepared, there are few reports on nanowires containing rich metal oxides. Herein, porous PdCu alloy nanowires and PdCu-SnO2 nanowires were prepared by using a galvanic displacement synthesis method. Due to their one-dimensional structure, rough surfaces with non-homogeneous edges, electronic effect, and the advanced PdCu/SnO2 interface of the as-synthesized PdCu-SnO2 nanowire catalysts, they exhibited a mass activity of 7770.0 mA mg-1 towards ethanol oxidation, which was 7.6-fold higher than that of Pd/C catalysts (1025.0 mA mg-1). In addition, they behaved strong durability upon chronoamperometry and continuous cyclic voltammetry tests. The electrochemical measurements demonstrated that SnO2 was introduced into the PdCu/SnO2 interface, which promoted the oxidation of ethanol at a lower potential and accelerated the oxidation of Pd-COads via SnO2-OHads to regenerate the active sites. This research highlights the significance of introducing metal oxides into the nanostructure interface, and the performance of Pd-containing catalysts towards ethanol oxidation reaction was greatly improved.
Collapse
Affiliation(s)
- Tongxin Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Liujun Jin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Shujin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China.
| | - Chunyan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China.
| |
Collapse
|
11
|
Tamiji T, Nezamzadeh-Ejhieh A. Electrocatalytic behavior of AgBr NPs as modifier of carbon past electrode in the presence of methanol and ethanol in aqueous solution: A kinetic study. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.08.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|