Gulati S, Lingam B HN, Kumar S, Goyal K, Arora A, Varma RS. Improving the air quality with Functionalized Carbon Nanotubes: Sensing and remediation applications in the real world.
CHEMOSPHERE 2022;
299:134468. [PMID:
35364076 DOI:
10.1016/j.chemosphere.2022.134468]
[Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/19/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
With the world developing exponentially every day, the collateral damage to air is incessant. There are many methods to purify the air but using carbon nanotubes (CNTs) as adsorbents remains one of the most efficient and reliable methods, due to their high maximum adsorption capacity which renders them extremely useful for removing pollutants from the air. The different types of CNTs, their synthesis, functionalization, purification, functioning, and advantages over conventional filters are deliberated along with diverse types of CNTs like single-walled (SWCNTs), multiwalled (MWCNTs), and others, which can be functionalized and deployed for the removal of harmful gases like oxides of nitrogen and sulphur, and ozone, and volatile organic compounds (VOCs), among others. A comprehensive description of CNTs is provided in this overview with illustrative examples from the past five years. The fabrication methods and target gases of many CNTs-based gas sensors are highlighted, in addition to the comparison of their properties, mainly sensitivity. The effect of functionalization on sensors has been discussed in detail for various composites targeting specific gases, including the future outlook of functionalized CNTs in assorted practical applications.
Collapse