1
|
Mirzahedayat B, Kalvani N, Mehrasbi MR, Assadi A. Advances in photocatalytic degradation of tetracycline using graphene-based composites in water: a systematic review and future directions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35359-3. [PMID: 39455515 DOI: 10.1007/s11356-024-35359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
In this study, a comprehensive systematic review was conducted to better recognize the applicability of graphene-based photocatalytic processes for the degradation of tetracycline (TC) from water. A broad search strategy was developed for English language articles available in PubMed, Scopus, and Web of Science. The effect of parameters such as pH, TC concentration, photocatalyst dose, radiation source intensity, and the effect of graphene on the process, kinetics, and reuse of the photocatalyst were investigated. A total of 63 out of a possible 3498 retrieved records met inclusion criteria. The results showed that most related studies have increased since 2019. About 46.7% of the articles showed 90-100% TC removal efficiency and 59.52% of the studies had optimal pH equal to 5 and 6. Also, the widespread use of visible light had a significant trend. The effect of the dose of graphene in the catalyst was one of the most important and effective factors on the process; hence, the difference in efficiency with and without graphene was completely evident. This review indicated that the presence of graphene has been able to have a positive effect on increasing the efficiency of oxidation processes, and it can be used for environmental pollutants remediation.
Collapse
Affiliation(s)
- Bahare Mirzahedayat
- Department of Environmental Health Engineering, School of Public Health, Zanjan University of Medical Sciences, P.O. Box 4515713656, Zanjan, Iran
| | - Nima Kalvani
- Department of Environmental Health Engineering, School of Public Health, Zanjan University of Medical Sciences, P.O. Box 4515713656, Zanjan, Iran
| | - Mohammad Reza Mehrasbi
- Department of Environmental Health Engineering, School of Public Health, Zanjan University of Medical Sciences, P.O. Box 4515713656, Zanjan, Iran
| | - Ali Assadi
- Department of Environmental Health Engineering, School of Public Health, Zanjan University of Medical Sciences, P.O. Box 4515713656, Zanjan, Iran.
| |
Collapse
|
2
|
Seliverstova E, Serikov T, Nuraje N, Ibrayev N, Sadykova A, Amze M. Plasmonic effect of metal nanoparticles on the photocatalytic properties of TiO 2/rGO composite. NANOTECHNOLOGY 2024; 35:325401. [PMID: 38608318 DOI: 10.1088/1361-6528/ad3e02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
A comparative study of the plasmon effect of Ag and Au nanoparticles on TiO2/rGO nanocomposite was carried out. The synthesis of Au and Ag nanoparticles was carried out by laser ablation. The morphology and structure of the nanocomposites were studied by EDA, HRTEM, XRD and Raman spectroscopy. It was shown that the absorption capacity of the nanocomposite material was increased in the visible range of the spectrum when Ag and Au nanoparticles were added to TiO2/rGO. This leads to an increase in their photocatalytic activity. The photocurrent generated by NC/Au 10-11films is in 3.8 times and NC/Ag 10-12is in 2 times higher compared to pure TiO2/rGO film. Similar results were obtained from experimental data on the dyes photodegradation. In the presence of plasmon nanoparticles a significant enhancement in the electrical properties of the TiO2/rGO nanocomposite was recorded. The charge carrier transfer resistance in nanocomposites was decreased by almost ∼7 times for NC/Au,10-11and ∼4 times for NC/Ag,10-12films compared to pure TiO2/rGO. In addition, for nanocomposites with Ag or Au nanoparticles, a decrease in the effective electron lifetime was observed. The data obtained allow us to conclude that plasmonic NPs have a synergistic effect in TiO2/rGO nanocomposites, which consists in modifying both their light-harvesting properties and charge-transport characteristics. The results obtained can be used for the design of materials with improved photocatalytic and optoelectronic characteristics.
Collapse
Affiliation(s)
- Evgeniya Seliverstova
- Institute of Molecular Nanophotonics, Buketov Karaganda University, Universitetskaya str. 28, Karaganda 100024, Kazakhstan
| | - Timur Serikov
- Institute of Molecular Nanophotonics, Buketov Karaganda University, Universitetskaya str. 28, Karaganda 100024, Kazakhstan
| | - Nurxat Nuraje
- Department of Chemical and Materials Engineering, School of Engineering and Digital Science, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, 010000, Kazakhstan
- Renewable Energy Lab, National Laboratory Astana, Nazarbayev University, 53, Astana, 010000, Kazakhstan
| | - Niyazbek Ibrayev
- Institute of Molecular Nanophotonics, Buketov Karaganda University, Universitetskaya str. 28, Karaganda 100024, Kazakhstan
| | - Aigul Sadykova
- Institute of Molecular Nanophotonics, Buketov Karaganda University, Universitetskaya str. 28, Karaganda 100024, Kazakhstan
| | - Magzhan Amze
- Department of Chemical and Materials Engineering, School of Engineering and Digital Science, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, 010000, Kazakhstan
| |
Collapse
|
3
|
Permporn D, Wantala K, Khemthong P, Phanthasri J, Neramittagapong S, Wongaree M, Khunphonoi R. Insight into the photocatalytic reduction of hexavalent chromium using photodeposited metal nanoparticle-TiO 2 photocatalysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90328-90340. [PMID: 36520297 DOI: 10.1007/s11356-022-24645-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Hexavalent chromium (Cr(VI)) is carcinogenic to organisms. It is widely used in several industries. In this work, we investigated the Cr(VI) photocatalytic reaction with a scavenger on Pt and Cu-TiO2 photocatalysts. Metal-deposited TiO2 was successfully synthesized by a photodeposition method. TEM-EDX, XRD, and UV-DR were analyzed to study the changes in morphology, crystallinity, and the electronic properties of photocatalysts. The rate of charge recombination during reduction and photoluminescence (PL) spectroscopy was used to examine the catalysts in depth. Cu-TiO2 demonstrates the highest photocatalytic activity for 63.74% of Cr(VI) removal. To understand the photoreduction of Cr(VI), the fate transformation of Cr species during the adsorption and reaction was investigated using in situ XANES. The results demonstrated that the Cr(III) was noticeably main component adsorbed over the catalyst, particularly in Cu-TiO2. The presence of humic acid can boost the Cr(VI) removal efficiency and enhanced the Cr(VI) reduction to Cr(III). We believe that the extensive research on Cr(VI) photoreduction on metal-TiO2 heterojunction will provide a comprehensive understanding of catalytic behaviors, paving the way for rationally designed novel Cr reduction catalysts.
Collapse
Affiliation(s)
- Darika Permporn
- Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kitirote Wantala
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pongtanawat Khemthong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathumthani, 12120, Thailand
| | - Jakkapop Phanthasri
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathumthani, 12120, Thailand
| | - Sutasinee Neramittagapong
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Mathana Wongaree
- Department of Environmental Science, Faculty of Science, Udon Thani Rajabhat University, Udon Thani, 41000, Thailand
| | - Rattabal Khunphonoi
- Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
4
|
Nabil S, Hammad AS, El-Bery HM, Shalaby EA, El-Shazly AH. The CO 2 photoconversion over reduced graphene oxide based on Ag/TiO 2 photocatalyst in an advanced meso-scale continuous-flow photochemical reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36157-36173. [PMID: 33687629 DOI: 10.1007/s11356-021-13090-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/17/2021] [Indexed: 05/06/2023]
Abstract
This study aims at examining the use of an advanced meso-scale continuous-flow photochemical reactor for the photocatalytic conversion of CO2 with water into fuel over TiO2 (P25), Ag/TiO2, and Ag/TiO2/RGO catalysts. The silver loaded photocatalysts were prepared by one-step process via hydrothermal method. The prepared photocatalysts were characterized by various characterization techniques in order to identify the morphological, chemical, physical, and optical properties. The photocatalytic activity of the as-prepared catalysts was firstly examined by the photoelectrochemical (PEC) measurements and secondly by the photocatalytic reduction of CO2 in the proposed setup. Liquid products were analyzed using gas chromatography-mass spectrometry (GC-MS) and total organic carbon (TOC) techniques. It was found that the ternary composite revealed an outstanding performance towards CO2 photocatalytic reduction, where its selectivity was directed towards methanol production. The incorporation of graphene nanosheets enhanced the photocatalytic reduction of CO2 by 3.3 and 9.4 times compared with Ag/TiO2 and bare TiO2, respectively, using the proposed photochemical reactor in a continuous mode. This study sheds the light on a novel type of a photocatalytic reactor where CO2 conversion over Ag/TiO2/RGO ternary composite was evaluated. A meso-scale continuous-flow photochemical reactor.
Collapse
Affiliation(s)
- Samar Nabil
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt.
| | - Ahmed S Hammad
- Chemical Engineering Department, Faculty of Engineering, Port Said University, Port Said, Egypt
| | - Haitham M El-Bery
- Advanced Functional Materials Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Elsayed A Shalaby
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Ahmed H El-Shazly
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology, Alexandria, 21934, Egypt
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt
| |
Collapse
|
5
|
Besharat F, Ahmadpoor F, Nasrollahzadeh M. Graphene-based (nano)catalysts for the reduction of Cr(VI): A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116123] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Minale M, Gu Z, Guadie A, Kabtamu DM, Li Y, Wang X. Application of graphene-based materials for removal of tetracyclines using adsorption and photocatalytic-degradation: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 276:111310. [PMID: 32891984 DOI: 10.1016/j.jenvman.2020.111310] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/12/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Tetracyclines are extensively used to treat human and animal infectious diseases due to its effective antimicrobial activities. About 70-90% of its parent materials are released into the environment through urine and feces, implying they are the most frequently detected antibiotics in the environment with high ecological risks. Adsorption and photocatalysis have been promising techniques for the removal of tetracyclines due to effectiveness and efficiency. Graphene-based materials provide promising platforms for adsorptive and photocatalytic removal of tetracyclines from aqueous environment owning to distinctive remarkable physicochemical, optical, and electrical characteristics. Herein, we intensively reviewed the available literatures in order to provide comprehensive insight about the applications and mechanisms of graphene-based materials for removal of tetracyclines via adsorption and phototocatalysis. The synthesis methods of graphene-based materials, the tetracycline adsorption and photocatalytic-degradation conditions, and removal mechanisms have been extensively discussed. Finally concluding remarks and future perspectives have been deduced and recommended to stimulate further researches in the subject. The review study can be used as theoretical guideline for further researchers to improve the current approaches of material synthesis and application towards tetracyclines removal.
Collapse
Affiliation(s)
- Mengist Minale
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Zaoli Gu
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; College of Environmental Science and Engineering, Tongji University, PR China.
| | - Awoke Guadie
- Key Laboratory of Environmental Biotechnology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Daniel Manaye Kabtamu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yuan Li
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; College of Environmental Science and Engineering, Tongji University, PR China
| | - Xuejiang Wang
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; College of Environmental Science and Engineering, Tongji University, PR China.
| |
Collapse
|