1
|
Bai Z, Xu H, Li G, Yang B, Yao J, Guo K, Wang N. MoS 2 Nanosheets Decorated with Fe 3O 4 Nanoparticles for Highly Efficient Solar Steam Generation and Water Treatment. Molecules 2023; 28:1719. [PMID: 36838707 PMCID: PMC9959009 DOI: 10.3390/molecules28041719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
The shortage of water resources has always been one of the most difficult problems that perplexes humanity. Solar steam generation (SSG) has been a new non-polluting and low-cost water purification method in recent years. However, the high cost of traditional photothermal conversion materials and the low efficiency of photothermal conversion has restricted the large-scale application of SSG technology. In this work, composite materials with Fe3O4 nanospheres attached to MoS2 nanosheets were synthesized, which increased the absorbance and specific surface area of the composite materials, reduced the sunlight reflection, and increased the photothermal conversion efficiency. During the experiment, the composite material was evenly coated on cotton. The strong water absorption of cotton ensured that the water could be transported sufficiently to the surface for evaporation. Under one sun irradiation intensity, the evaporation rate of the sample synthesized in this work reached 1.42 kg m-2 h-1; the evaporation efficiency is 89.18%. In addition, the surface temperature of the sample can reach 41.6 °C, which has far exceeded most photothermal conversion materials. Furthermore, the use of this composite material as an SSG device for seawater desalination and sewage purification can remove more than 98% of salt ions in seawater, and the removal rate of heavy metal ions in sewage is close to 100%, with a good seawater desalination capacity and sewage purification capacity. This work provides a new idea for the application of composite materials in the field of seawater desalination and sewage purification.
Collapse
Affiliation(s)
- Zhi Bai
- School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China
| | - Haifeng Xu
- School of Information Engineering, Suzhou University, Suzhou 234000, China
| | - Guang Li
- Anhui Key Laboratory of Information Materials and Devices, Institute of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui University, Hefei 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institute of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Bo Yang
- School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
| | - Jixin Yao
- Universities Joint Key Laboratory of Photoelectric Detection Science and Technology in Anhui Province, Hefei Normal University, Hefei 230601, China
| | - Kai Guo
- School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China
- Anhui Provincial Engineering Laboratory on Information Fusion and Control of Intelligent Robot, Wuhu 241002, China
| | - Nan Wang
- School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China
| |
Collapse
|
2
|
Song C, Jin Y, Gu X, Shi J. A solar-driven self-repairing sponge for efficient recovery of crude oil. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
CAU-101-H as efficient water sorbent for solar steam generation. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Igalavithana AD, Yuan X, Attanayake CP, Wang S, You S, Tsang DCW, Nzihou A, Ok YS. Sustainable management of plastic wastes in COVID-19 pandemic: The biochar solution. ENVIRONMENTAL RESEARCH 2022; 212:113495. [PMID: 35660402 PMCID: PMC9155208 DOI: 10.1016/j.envres.2022.113495] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/08/2022] [Accepted: 05/14/2022] [Indexed: 05/21/2023]
Abstract
To prevent the COVID-19 transmission, personal protective equipment (PPE) and packaging materials have been extensively used but often managed inappropriately, generating huge amount of plastic waste. In this review, we comprehensively discussed the plastic products utilized and the types and amounts of plastic waste generated since the outbreak of COVID-19, and reviewed the potential treatments for these plastic wastes. Upcycling of plastic waste into biochar was addressed from the perspectives of both environmental protection and practical applications, which can be verified as promising materials for environmental protections and energy storages. Moreover, novel upcycling of plastic waste into biochar is beneficial to mitigate the ubiquitous plastic pollution, avoiding harmful impacts on human and ecosystem through direct and indirect micro-/nano-plastic transmission routes, and achieving the sustainable plastic waste management for value-added products, simultaneously. This suggests that the plastic waste could be treated as a valuable resource in an advanced and green manner.
Collapse
Affiliation(s)
- Avanthi D Igalavithana
- Department of Soil Science, Faculty of Agriculture, University of Peradeniya, 20400, Sri Lanka; Korea Biochar Research Centre, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Xiangzhou Yuan
- Korea Biochar Research Centre, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea; R&D Centre, Sun Brand Industrial Inc., Jeollanam-do, 57248, South Korea
| | - Chammi P Attanayake
- Department of Soil Science, Faculty of Agriculture, University of Peradeniya, 20400, Sri Lanka
| | - Shujun Wang
- Korea Biochar Research Centre, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea; College of Water Conservancy, Shenyang Agricultural University, Shenyang, China
| | - Siming You
- Division of Systems, Power and Energy, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Ange Nzihou
- Université de Toulouse, Mines Albi, UMR CNRS 5302, Centre RAPSODEE, Campus Jarlard, F-81013, Albi Cedex 09, France; Princeton University, School of Engineering and Applied Science, Princeton, NJ 08544, USA; Princeton University, Andlinger Center for Energy and the Environment, Princeton, NJ 08544, USA
| | - Yong Sik Ok
- Korea Biochar Research Centre, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
5
|
Song C, Jiang Z, Gu X, Li H, Shi J. A bilayer solar evaporator with all-in-one design for efficient seawater desalination. J Colloid Interface Sci 2022; 616:709-719. [PMID: 35247809 DOI: 10.1016/j.jcis.2022.02.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
Abstract
Bilayer solar evaporator combines high photothermal conversion capacity and low heat loss, has become the new darling in interfacial solar steam generation (ISSG). However, the bilayer structure generally achieved by introducing a photothermal coating on the substrate is not conducive to long-term use due to the poor stability of coating. Herein, a fully biomass-based bilayer evaporator is all-in-one designed, using chitosan (CS) as building blocks and CS derived N, S - doped porous carbon (NSPC) as fillers via pre-freezing and freeze-drying. This facile method could realise the quantitative addition of photothermal materials and controllably regulate the structure of the bilayer evaporator, making the structural optimisation readily available. The optimised evaporator exhibits a remarkable evaporation rate of 2.51 kg m-2h-1. After 1000 times of pressing, it still maintains at 2.42 kg m-2h-1. Additionally, the evaporator displays outstanding long-lasting stability, excellent salt-resistant and degradability. More importantly, a solar desalination device is fabricated for harvesting freshwater outdoor. The daily water production per unit area (4.55 kg) meets the consumption of two adults. This work provides a controllable synthesis strategy of bilayer evaporators for handling global freshwater shortages.
Collapse
Affiliation(s)
- Changyuan Song
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenghao Jiang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiangyi Gu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hao Li
- School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Jianwei Shi
- School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
6
|
Biogas role in achievement of the sustainable development goals: Evaluation, Challenges, and Guidelines. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104207] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Wei W, Wang Q, Li J, Liu D, Niu J, Liu P. Clusters of ultra-fine tin dioxide nanoparticles anchored polypyrrole nanotubes as anode for high electrochemical capacity lithium ion batteries. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Hao L, Liu N, Bai H, He P, Niu R, Gong J. High-performance solar-driven interfacial evaporation through molecular design of antibacterial, biomass-derived hydrogels. J Colloid Interface Sci 2021; 608:840-852. [PMID: 34689113 DOI: 10.1016/j.jcis.2021.10.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022]
Abstract
Hydrogel has been regarded as one of the most promising candidates for next-generation solar evaporation technology to produce freshwater from non-potable water. However, synthesizing hydrogel absorbers that can precisely regulate water state and significantly reduce the water vaporization enthalpy remains a grand challenge. Herein, we report the rational design of a novel hydrogel hybrid solar evaporator constructed by poly(vinyl alcohol) and sodium lignosulfonate (SLS), with addition of carbon nanotube as a light absorption material. The abundant sulfonate and hydroxyl groups of SLS enhance the interplay between hydrogel and water molecule through electrostatic interaction and hydrogen bond. As such, the presence of SLS not only remarkably promotes the hydrophilicity and water transport of hydrogel, but also precisely tunes the state of water molecule and the content of intermediate water for reducing the water vaporization enthalpy. The combined advantageous features endow the as-prepared hydrogel with an evaporation rate up to 2.09 kg m-2 h-1 under 1 Sun illumination, along with good anti-acid/basic abilities, antibacterial property, high salt-tolerance, and self-cleaning capability in purifying different types of wastewater. Finally, an outdoor solar seawater desalination device is designed to generate drinking water from seawater. The daily drinking water production amount per square meter is ca. 13 kg, which satifies the five adults' daily water consumption (12.5 kg). The present study highlights that rationally constructing the molecular architecture of hydrogel and tuning the interplay between water and hydrogel are effective strategies to fabricate advanced hydrogel solar evaporators for addressing the global freshwater shortage.
Collapse
Affiliation(s)
- Liang Hao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ning Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huiying Bai
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Panpan He
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ran Niu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jiang Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
9
|
Ultralong polypyrrole nanotubes aerogels with excellent elasticity for efficient solar steam generation. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.07.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
|