1
|
Zhong C, Jiang Y, Liu Q, Sun X, Yu J. Natural siderite derivatives activated peroxydisulfate toward oxidation of organic contaminant: A green soil remediation strategy. J Environ Sci (China) 2023; 127:615-627. [PMID: 36522091 DOI: 10.1016/j.jes.2022.06.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 06/17/2023]
Abstract
Natural siderite (FeCO3), simulated synthetic siderite and nZVI/FeCO3 composite were used as green and easily available iron-based catalysts in peroxydisulfate activation for remediating 2-chlorophenol as the target contaminant and this technique can effectively degrade organic pollutants in the soil. The key reaction parameters such as catalysts dosage, oxidant concentration and pH, were investigated to evaluate the catalytic performance of different materials in catalytic systems. The buffering property of natural soil conduced satisfactory degradation performance in a wide pH range (3-10). Both the main non-radical of 1O2 and free radicals of SO4·- and OH· were evidenced by quenching experiment and electron paramagnetic resonance. The reduction of nZVI on FFC surface not only has the advantage for electronic transfer to promote the circulation of Fe(III) to Fe(II), but also can directly dechlorinate. Furthermore, the intermediates were comprehensively analyzed by GC-MS and a potential removal mechanism of three oxidant system for 2-CP soil degradation was obtained. Briefly, this research provides a new perspective for organic contaminate soil treatment using natural siderite or simulated synthetic siderite as efficient and environmental catalytic material.
Collapse
Affiliation(s)
- Chengwei Zhong
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin 644000, China
| | - Yinying Jiang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin 644000, China
| | - Quanfeng Liu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin 644000, China
| | - Xiaoshuang Sun
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin 644000, China
| | - Jiang Yu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin 644000, China; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Qamar MT, Iqbal S, Aslam M, Alhujaily A, Bilal A, Rizwan K, Farooq HMU, Sheikh TA, Bahadur A, Awwad NS, Ibrahium HA, Almufarij RS, Elkaeed EB. Transition metal doped CeO 2 for photocatalytic removal of 2-chlorophenol in the exposure of indoor white light and antifungal activity. Front Chem 2023; 11:1126171. [PMID: 37201130 PMCID: PMC10186159 DOI: 10.3389/fchem.2023.1126171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/08/2023] [Indexed: 05/20/2023] Open
Abstract
Besides natural sunlight and expensive artificial lights, economical indoor white light can play a significant role in activating a catalyst for photocatalytic removal of organic toxins from contaminated water. In the current effort, CeO2 has been modified with Ni, Cu, and Fe through doping methodology to study the removal of 2-chlorophenol (2-CP) in the illumination of 70 W indoor LED white light. The absence of additional diffractions due to the dopants and few changes such as reduction in peaks' height, minor peak shift at 2θ (28.525°) and peaks' broadening in XRD patterns of modified CeO2 verifies the successful doping of CeO2. The solid-state absorption spectra revealed higher absorbance of Cu-doped CeO2 whereas a lower absorption response was observed for Ni-doped CeO2. An interesting observation regarding the lowering of indirect bandgap energy of Fe-doped CeO2 (∼2.7 eV) and an increase in Ni-doped CeO2 (∼3.0 eV) in comparison to pristine CeO2 (∼2.9 eV) was noticed. The process of e -- h + recombination in the synthesized photocatalysts was also investigated through photoluminescence spectroscopy. The photocatalytic studies revealed the greater photocatalytic activity of Fe-doped CeO2 with a higher rate (∼3.9 × 10-3 min-1) among all other materials. Moreover, kinetic studies also revealed the validation of the Langmuir-Hinshelwood kinetic model (R2 = 0.9839) while removing 2-CP in the exposure of indoor light with a Fe-doped CeO2 photocatalyst. The XPS analysis revealed the existence of Fe3+, Cu2+ and Ni2+ core levels in doped CeO2. Using the agar well-diffusion method, the antifungal activity was assessed against the fungus M. fructicola and F. oxysporum. Compared to CeO2, Ni-doped CeO2, and Cu-doped CeO2 nanoparticles, the Fe-doped CeO2 nanoparticles have outstanding antifungal properties.
Collapse
Affiliation(s)
- M. Tariq Qamar
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST), Islamabad, Pakistan
- *Correspondence: Shahid Iqbal, ; Ali Bahadur, ; Eslam B. Elkaeed,
| | - M. Aslam
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Alhujaily
- Biology Department, College of Science, Taibah University, Al Madinah Al Munawarah, Saudi Arabia
| | - Anum Bilal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, Pakistan
| | | | - Tahir Ali Sheikh
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ali Bahadur
- Department of Chemistry, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
- *Correspondence: Shahid Iqbal, ; Ali Bahadur, ; Eslam B. Elkaeed,
| | - Nasser S. Awwad
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Hala A. Ibrahium
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department of Semi Pilot Plant, Nuclear Materials Authority, El Maadi, Egypt
| | - Rasmiah S. Almufarij
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
- *Correspondence: Shahid Iqbal, ; Ali Bahadur, ; Eslam B. Elkaeed,
| |
Collapse
|
3
|
Mixed-phase of mesoporous titania nanoparticles as visible-light driven photodegradation of 2-chlorophenol: influence type of surfactant. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02663-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Zamani S, Rahimi MR, Ghaedi M. Spinning disc photoreactor based visible-light-driven Ag/Ag 2O/TiO 2 heterojunction photocatalyst film toward the degradation of amoxicillin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114216. [PMID: 34896858 DOI: 10.1016/j.jenvman.2021.114216] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
The presence of antibiotics in waste and drinking water is causing increasing concern around the world, thereby an advanced sustainable technology needs to be developed to eliminate the antibiotics from water resources. Hence, an efficient spinning disc photoreactor (SDPR) equipped with visible light-activated Ag/Ag2O/TiO2 heterostructure thin film photocatalyst was assessed for the degradation of amoxicillin (AMX) as a typical antibiotic. The surface morphology, optoelectronic and structural features of Ag/Ag2O/TiO2 heterojunction were characterized by TEM, BET, mott Schottky, FESEM, EDS, AFM, XRD, UV-Vis-DRS, and contact angle measurements. Results confirm that Ag and Ag2O have a significant effect on the photocharge carrier separation and transfer of the as-developed photocatalyst system. The operative variables including illumination time, rotational speed, solution flow rate, aeration rate, pH, and initial AMX concentration were optimized by CCD. The results displayed the maximum AMX photodegradation (97.91%) could be achieved at optimal conditions involving illumination time of 80 min, a rotational speed of 225 rpm, the solution flow rate of 0.6 L/min, aeration rate of 20 L/min, pH = 6, and initial AMX concentration of 20 mg/L. Interestingly, more than 79% COD and 64% TOC were removed under optimum conditions during 80 min illumination time, respectively. Active species tests confirmed the dominant role of ·OH and ·O2- in AMX degradation. finally, the XRD pattern confirmed that the reusability assessments of the heterojunction film could successfully retain its stability for six consecutive photocatalytic degradation runs. This work demonstrates the feasibility of utilizing visible-light-driven thin-film photocatalysts in spinning disc photoreactors in treating the tenacious antibiotic pollutants.
Collapse
Affiliation(s)
- S Zamani
- Process Intensification Laboratory, Department of Chemical Engineering, Yasouj University, Yasouj, 75918-74831, Iran
| | - M R Rahimi
- Process Intensification Laboratory, Department of Chemical Engineering, Yasouj University, Yasouj, 75918-74831, Iran.
| | - M Ghaedi
- Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Iran
| |
Collapse
|
5
|
Zeng H, Yi J, Zhang L, Wu H, Wu K, Guo J. Fabrication of MIL-53(Fe)/Ag3PO4 cooperated Photoreduction of Ag0 Particles with outstanding Efficiency on photo-driven H2 Evolution and Pollutant Degradation. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00277a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel heterostructure photocatalyst includes photoreduction of Ag0 loaded MIL-53(Fe)/Ag3PO4 (MFAAx) composites were designed and successfully synthesized via hydrothermal with deposition and photoreduction method. Then the physicochemical and optical properties...
Collapse
|