1
|
Hussain B, Zhu H, Xiang C, Mengfei L, Zhu B, Liu S, Ma H, Pu S. Evaluation of the immobilized enzymes function in soil remediation following polycyclic aromatic hydrocarbon contamination. ENVIRONMENT INTERNATIONAL 2024; 194:109106. [PMID: 39571295 DOI: 10.1016/j.envint.2024.109106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 12/22/2024]
Abstract
The bioremediation of polycyclic aromatic hydrocarbon (PAHs) from soil utilizing microorganisms, enzymes, microbial consortiums, strains, etc. has attracted a lot of interest due to the environmentally friendly, and cost-effective features. Enzymes can efficiently break down PAHs in soil by hydroxylating the benzene ring, breaking the C-C bond, and catalyze the hydroxylation of a variety of benzene ring compounds via single-electron transfer oxidation. However, the practical application is limited by its instability and ease to loss function under harsh environmental conditions such as pH, temperature, and edaphic stress etc. Therefore, this paper focused on the techniques used to immobilize enzymes and remediate PAHs in soil. Moreover, previous research has not adequately covered this topic, despite the employment of several immobilized enzymes in aqueous solution cultures to remediate other types of organic pollutants. Bibliometric analysis further highlighted the research trends from 2000 to 2023 on this field of growing interest and identified important challenges regarding enzyme stability and interaction with soil matrices. The findings indicated that immobilized enzymes may catalyzed PAHs via oxidation of OH groups in benzene rings, and generate benzyl radicals (i.e., •OH and •O2) that undergo further reaction and release water. As a result, the intermediate products of PAHs further catalyze by enzyme and enzyme induced microbes producing carbon dioxide and water. Meanwhile efficiency, activity, lifetime, resilience, and sustainability of immobilized enzyme need to be further improved for the large-scale and field-scale clean-up of PAHs polluted soils. This could be possible by integrating enzyme-based with microbial and plant-based remediation strategies. It can be coupled with another line of research focused on using a new set of support materials that can be derived from natural resources.
Collapse
Affiliation(s)
- Babar Hussain
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Hongqing Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Chunyu Xiang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Luo Mengfei
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Bowei Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Shibin Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China.
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
2
|
Rahman MU, Ullah MW, Shah JA, Sethupathy S, Bilal H, Abdikakharovich SA, Khan AU, Khan KA, Elboughdiri N, Zhu D. Harnessing the power of bacterial laccases for xenobiotic degradation in water: A 10-year overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170498. [PMID: 38307266 DOI: 10.1016/j.scitotenv.2024.170498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Industrialization and population growth are leading to the production of significant amounts of sewage containing hazardous xenobiotic compounds. These compounds pose a threat to human and animal health, as well as the overall ecosystem. To combat this issue, chemical, physical, and biological techniques have been used to remove these contaminants from water bodies affected by human activity. Biotechnological methods have proven effective in utilizing microorganisms and enzymes, particularly laccases, to address this problem. Laccases possess versatile enzymatic characteristics and have shown promise in degrading different xenobiotic compounds found in municipal, industrial, and medical wastewater. Both free enzymes and crude enzyme extracts have demonstrated success in the biotransformation of these compounds. Despite these advancements, the widespread use of laccases for bioremediation and wastewater treatment faces challenges due to the complex composition, high salt concentration, and extreme pH often present in contaminated media. These factors negatively impact protein stability, recovery, and recycling processes, hindering their large-scale application. These issues can be addressed by focusing on large-scale production, resolving operation problems, and utilizing cutting-edge genetic and protein engineering techniques. Additionally, finding novel sources of laccases, understanding their biochemical properties, enhancing their catalytic activity and thermostability, and improving their production processes are crucial steps towards overcoming these limitations. By doing so, enzyme-based biological degradation processes can be improved, resulting in more efficient removal of xenobiotics from water systems. This review summarizes the latest research on bacterial laccases over the past decade. It covers the advancements in identifying their structures, characterizing their biochemical properties, exploring their modes of action, and discovering their potential applications in the biotransformation and bioremediation of xenobiotic pollutants commonly present in water sources.
Collapse
Affiliation(s)
- Mujeeb Ur Rahman
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Junaid Ali Shah
- College of Life Sciences, Jilin University, Changchun 130012, PR China; Fergana Medical Institute of Public Health Uzbekistan, Fergana 150110, Uzbekistan
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hazart Bilal
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, PR China
| | | | - Afaq Ullah Khan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
3
|
Alvarado-Ramírez L, Machorro-García G, López-Legarrea A, Trejo-Ayala D, Rostro-Alanis MDJ, Sánchez-Sánchez M, Blanco RM, Rodríguez-Rodríguez J, Parra-Saldívar R. Metal-organic frameworks for enzyme immobilization and nanozymes: A laccase-focused review. Biotechnol Adv 2024; 70:108299. [PMID: 38072099 DOI: 10.1016/j.biotechadv.2023.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Laccases are natural catalysts with remarkable catalytic activity. However, their application is limited by their lack of stability. Metal-organic frameworks (MOFs) have emerged as a promising alternative for enzyme immobilization. Enzymes can be immobilized in MOFs via two approaches: postsynthetic immobilization and in situ immobilization. In postsynthetic immobilization, an enzyme is embedded after MOF formation by covalent interactions or adsorption. In contrast, in in situ immobilization, a MOF is formed in the presence of an enzyme. Additionally, MOFs have exhibited intrinsic enzyme-like activity. These materials, known as nanozymes when they have the ability to replace enzymes in certain catalytic processes, have multiple key advantages, such as low cost, easy preparation, and large surface areas. This review presents a general overview of the most recent advances in both enzyme@MOF biocatalysts and MOF-based nanozymes in different applications, with a focus on laccase, which is one of the most widely investigated enzymes with excellent industrial potential.
Collapse
Affiliation(s)
| | | | - Andrea López-Legarrea
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Dulce Trejo-Ayala
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | | | - Manuel Sánchez-Sánchez
- Instituto de Catálisis y Petroleoquímica (ICP), Consejo Superior de Investigaciones Científicas (CSIC). C/ Marie Curie, 2, Madrid 28049, Spain.
| | - Rosa M Blanco
- Instituto de Catálisis y Petroleoquímica (ICP), Consejo Superior de Investigaciones Científicas (CSIC). C/ Marie Curie, 2, Madrid 28049, Spain.
| | | | - Roberto Parra-Saldívar
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico.
| |
Collapse
|
4
|
Sadjadi S, Tarighi S, Delangiz M, Heravi M. Heteropolyacid supported on ionic liquid decorated hierarchical faujasite zeolite as an efficient catalyst for glycerol acetalization to solketal. Sci Rep 2023; 13:15703. [PMID: 37735246 PMCID: PMC10514292 DOI: 10.1038/s41598-023-42956-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023] Open
Abstract
To handle huge amount of glycerol produced in biodiesel industry, glycerol is transformed to value-added products. In this regard, glycerol acetalization to solketal is industrially attractive. As in this process various by-products can be formed, designing highly selective catalysts is of great importance. In this line, we wish to report a novel catalyst that benefits from strong acidity, high specific surface area and thermal stability, which can selectively form solketal in glycerol acetalization. To prepare the catalyst, hierarchical zeolite was prepared via a novel method, in which partially dealuminated NaY was treated with PluronicF-127 and then reacted with NH4NO3 to furnish the H-form zeolite. Hierarchical faujasite was then achieved through calcination and template removal. Subsequently, it was functionalized with ionic liquid and used for the immobilization of heteropolyacid. The results indicated the importance of the mesoprosity of zeolite and the presense of ionic liquid functionality for achiveing high solketal yield. Moreover, among three investigated heteropolyacids, phosphomolybdic acid exhibited the highest catalytic activity. In fact, using 10 wt% catalyst at 55 °C and glycerol to acetone molar ratio of 1:20, solketal with yield of 98% was furnished under solvent-less condition. Besides, the catalyst was recyclable with low leaching of heteropolyacid.
Collapse
Affiliation(s)
- Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, P.O. Box 14975-112, Tehran, Iran.
| | - Sara Tarighi
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, P.O. Box 14975-112, Tehran, Iran
| | - Motahareh Delangiz
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, P.O. Box 14975-112, Tehran, Iran
| | - Majid Heravi
- Department of Chemistry, School of Physic and Chemistry, Alzahra University, P.O. Box 1993891176, Vanak, Tehran, Iran
| |
Collapse
|
5
|
Naseem S, Rawal RS, Pandey D, Suman SK. Immobilized laccase: an effective biocatalyst for industrial dye degradation from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84898-84917. [PMID: 37369903 DOI: 10.1007/s11356-023-28275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023]
Abstract
Environmental concerns due to the release of industrial wastewater contaminated with dyes are becoming more and more intense with the increasing industrialization. Decolorization of industrial effluents has become the top priority due to the continuous demand for color-free discharge into the receiving water bodies. Different dye removal techniques have been developed, among which biodegradation by laccase enzyme is competitive. Laccase, as a green catalyst, has a high catalytic activity, generates less toxic by-products, and has been extensively researched in the field of remediation of dyes. However, laccase's significant catalytic activity could only be achieved after an effective immobilization step. Immobilization helps strengthen and stabilize the protein structure of laccase, thus enhancing its functional properties. Additionally, the reusability of immobilized laccase makes it an attractive alternative to traditional dye degradation technologies and in the realistic applications of water treatment, compared with free laccase. This review has elucidated different methods and the carriers used to immobilize laccase. Furthermore, the role of immobilized laccase in dye remediation and the prospects have been discussed.
Collapse
Affiliation(s)
- Shifa Naseem
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India
| | - Raja Singh Rawal
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun, 248005, Uttarakhand, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Tocco D, Wisser D, Fischer M, Schwieger W, Salis A, Hartmann M. Immobilization of Aspergillus sp. laccase on hierarchical silica MFI zeolite with embedded macropores. Colloids Surf B Biointerfaces 2023; 226:113311. [PMID: 37060651 DOI: 10.1016/j.colsurfb.2023.113311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/31/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Abstract
Laccase from Aspergillus sp. (LC) was immobilized on functionalized silica hierarchical (microporous-macroporous) MFI zeolite (ZMFI). The obtained immobilized biocatalyst (LC#ZMFI) was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (ATR-FTIR), N2 adsorption/desorption isotherms, solid-state NMR spectroscopy and thermogravimetric analysis (TGA) confirming the chemical anchoring of the enzyme to the zeolitic support. The optimal pH, kinetic parameters (KM and Vmax), specific activity, as well as both storage and operational stability of LC#ZMFI were determined. The LC#ZMFI KM and Vmax values amount to 10.3 µM and 0.74 µmol·mg-1 min-1, respectively. The dependence of specific activity on the pH for free and immobilized LC was investigated in the pH range of 2-7, The highest specific activity was obtained at pH = 3 for both free LC and LC#ZMFI. LC#ZMFI retained up to 50 % and 30 % of its original activity after storage of 21 and 30 days, respectively. Immobilization of laccase on hierarchical silica MFI zeolite allows to carry out the reaction under acidic pH values without affecting the support structure.
Collapse
Affiliation(s)
- Davide Tocco
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany; Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, SS 554 Bivio Sestu, 09042, Monserrato, CA, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via Della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Dorothea Wisser
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Marcus Fischer
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Wilhelm Schwieger
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Andrea Salis
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, SS 554 Bivio Sestu, 09042, Monserrato, CA, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via Della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Martin Hartmann
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
| |
Collapse
|
7
|
Dong CD, Tiwari A, Anisha GS, Chen CW, Singh A, Haldar D, Patel AK, Singhania RR. Laccase: A potential biocatalyst for pollutant degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120999. [PMID: 36608728 DOI: 10.1016/j.envpol.2023.120999] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
In the continual march to a predominantly urbanized civilization, anthropogenic activities have increased scrupulously, industrialization have occurred, economic growth has increased, and natural resources are being exploited, causing huge waste management problems, disposal issues, and the evolution of several pollutants. In order to have a sustainable environment, these pollutants need to be removed and degraded. Bioremediation employing microorganisms or enzymes can be used to treat the pollutants by degrading and/or transforming the pollutants into different form which is less or non-toxic to the environment. Laccase is a diverse enzyme/biocatalyst belonging to the oxidoreductase group of enzymes produced by microorganisms. Due to its low substrate specificity and monoelectronic oxidation of substrates in a wide range of complexes, it is most commonly used to degrade chemical pollutants. For degradation of emerging pollutants, laccase can be efficiently employed; however, large-scale application needs reusability, thermostability, and operational stability which necessitated strategies like immobilization and engineering of robust laccase possessing desirable properties. Immobilization of laccase for bioremediation, and treatment of wastewater for degrading emerging pollutants have been focussed for sustainable development. Challenges of employing biocatalysts for these applications as well as engineering robust laccase have been highlighted in this study.
Collapse
Affiliation(s)
- Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Ashutosh Tiwari
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Grace Sathyanesan Anisha
- Post-graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram, 695014, Kerala, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Anusuiya Singh
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India.
| |
Collapse
|
8
|
Maghraby Y, El-Shabasy RM, Ibrahim AH, Azzazy HMES. Enzyme Immobilization Technologies and Industrial Applications. ACS OMEGA 2023; 8:5184-5196. [PMID: 36816672 PMCID: PMC9933091 DOI: 10.1021/acsomega.2c07560] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/11/2023] [Indexed: 05/27/2023]
Abstract
Enzymes play vital roles in diverse industrial sectors and are essential components of many industrial products. Immobilized enzymes possess higher resistance to environmental changes and can be recovered/recycled easily when compared to the free forms. The primary benefit of immobilization is protecting the enzymes from the harsh environmental conditions (e.g., elevated temperatures, extreme pH values, etc.). The immobilized enzymes can be utilized in various large-scale industries, e.g., medical, food, detergent, textile, and pharmaceutical industries, besides being used in water treatment plants. According to the required application, a suitable enzyme immobilization technique and suitable carrier materials are chosen. Enzyme immobilization techniques involve covalent binding, encapsulation, entrapment, adsorption, etc. This review mainly covers enzyme immobilization by various techniques and their usage in different industrial applications starting from 1992 until 2022. It also focuses on the multiscale operation of immobilized enzymes to maximize yields of certain products. Lastly, the severe consequence of the COVID-19 pandemic on global enzyme production is briefly discussed.
Collapse
Affiliation(s)
- Yasmin
R. Maghraby
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Rehan M. El-Shabasy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Chemistry
Department, Faculty of Science, Menoufia
University, Shebin El-Kom 32512, Egypt
| | - Ahmed H. Ibrahim
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Center
for Materials Science, Zewail City of Science
and Technology, 6th of October 12578, Giza, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Department
of Nanobiophotonics, Leibniz Institute for
Photonic Technology, Albert Einstein Str. 9, Jena 07745, Germany
| |
Collapse
|
9
|
Shokri M, Tarighi S, Faramarzi MA, Sadjadi S, Mojtabavi S. Biodegradation of acid orange-7 dye by immobilized laccase on functionalized ZSM-5 zeolites: Investigation of the role of functionalization and SiO2/Al2O3 ratio of zeolite on the catalytic performance. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Sadjadi S, Tarighi S, Afshar Ebrahimi A. Novel composites of ZSM-5 and MOF as potent acidic catalysts: study of the role of zeolite characteristics in the catalytic activity. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Study of Membrane-Immobilized Oxidoreductases in Wastewater Treatment for Micropollutants Removal. Int J Mol Sci 2022; 23:ijms232214086. [PMID: 36430564 PMCID: PMC9699638 DOI: 10.3390/ijms232214086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/29/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
The development of efficient strategies for wastewater treatment to remove micropollutants is of the highest importance. Hence, in this study, we presented a rapid approach to the production of biocatalytic membranes based on commercially available cellulose membrane and oxidoreductase enzymes including laccase, tyrosinase, and horseradish peroxidase. Effective enzyme deposition was confirmed based on Fourier transform infrared spectra, whereas results of spectrophotometric measurements showed that immobilization yield for all proposed systems exceeded 80% followed by over 80% activity recovery, with the highest values (over 90%) noticed for the membrane-laccase system. Further, storage stability and reusability of the immobilized enzyme were improved, reaching over 75% after, respectively, 20 days of storage, and 10 repeated biocatalytic cycles. The key stage of the study concerned the use of produced membranes for the removal of hematoporphyrin, (2,4-dichlorophenoxy)acetic acid (2,4-D), 17α-ethynylestradiol, tetracycline, tert-amyl alcohol (anesthetic drug), and ketoprofen methyl ester from real wastewater sampling at various places in the wastewater treatment plant. Although produced membranes showed mixed removal rates, all of the analyzed compounds were at least partially removed from the wastewater. Obtained data clearly showed, however, that composition of the wastewater matrix, type of pollutants as well as type of enzyme strongly affect the efficiency of enzymatic treatment of wastewater.
Collapse
|
12
|
Chen Z, Oh WD, Yap PS. Recent advances in the utilization of immobilized laccase for the degradation of phenolic compounds in aqueous solutions: A review. CHEMOSPHERE 2022; 307:135824. [PMID: 35944673 DOI: 10.1016/j.chemosphere.2022.135824] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Phenolic compounds such as phenol, bisphenol A, 2,4-dichlorophenol, 2,4-dinitrophenol, 4-chlorophenol and 4-nitrophenol are well known to be highly detrimental to both human and living beings. Thus, it is of critical importance that suitable remediation technologies are developed to effectively remove phenolic compounds from aqueous solutions. Biodegradation utilizing enzymatic technologies is a promising biotechnological solution to sustainably address the pollution in the aquatic environment as caused by phenolic compounds under a defined environmentally optimized strategy and thus should be investigated in great detail. This review aims to present the latest developments in the employment of immobilized laccase for the degradation of phenolic compounds in water. The review first succinctly delineates the fundamentals of biological enzyme degradation along with a critical discussion on the myriad types of laccase immobilization techniques, which include physical adsorption, ionic adsorption, covalent binding, entrapment, and self-immobilization. Then, this review presents the major properties of immobilized laccase, namely pH stability, thermal stability, reusability, and storage stability, as well as the degradation efficiencies and associated kinetic parameters. In addition, the optimization of the immobilized enzyme, specifically on laccase immobilization methods and multi-enzyme system are critically discussed. Finally, pertinent future perspectives are elucidated in order to significantly advance the developments of this research field to a higher level.
Collapse
Affiliation(s)
- Zhonghao Chen
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| |
Collapse
|
13
|
Ma T, Yin M, Su C, Guo N, Huang X, Han Z, Wang Y, Chen G, Yun Z. Recent developments in the field of dehydration of bio-renewable glycerol to acrolein over molecular sieve catalysts. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Song X, Fu Y, Pang Y, Gao L. Preparation of La-Zn/HZSM-5 zeolite and its application in photocatalytic degradation of phenol. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Musielak E, Feliczak-Guzik A, Jaroniec M, Nowak I. Modification and Functionalization of Zeolites for Curcumin Uptake. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15186316. [PMID: 36143628 PMCID: PMC9504848 DOI: 10.3390/ma15186316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/12/2023]
Abstract
This work shows that hierarchical zeolites are promising systems for the delivery of biologically relevant hydrophobic substances, such as curcumin. The validity of using piperine as a promoter of curcumin adsorption was also evaluated. The use of pure curcumin is not medically applicable due to its low bioavailability and poor water solubility. To improve the undesirable properties of curcumin, special carriers are used to overcome these shortcomings. Hierarchical zeolites possessing secondary mesoporosity are used as pharmaceutical carrier systems for encapsulating active substances with low water solubility. This porosity facilitates access of larger reagent molecules to the active sites of the material, preserving desirable adsorption properties, acidity, and crystallinity of zeolites. In this work, methods are proposed to synthesize hierarchical zeolites based on a commercial FAU-type zeolite. Studies on the application and adsorption kinetics of curcumin using commercial FAU-type zeolite and hierarchical zeolites based on commercial FAU-type zeolite are also included.
Collapse
Affiliation(s)
- Ewelina Musielak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Agnieszka Feliczak-Guzik
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Izabela Nowak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
16
|
Hieu NH, Tu TH, Huong LM, Dat NM, Tinh NT, Hai ND, Viet ND, Trinh DN, Giang NTH, Phong MT. Optimization of Conditions for Removal Phenolic Compounds from Water by a Graphene Oxide Aerogel. ChemistrySelect 2022. [DOI: 10.1002/slct.202104563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nguyen Huu Hieu
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM) Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Tran Hoang Tu
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM) Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Le Minh Huong
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM) Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Nguyen Minh Dat
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM) Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Ninh Thi Tinh
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM) Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Nguyen Duy Hai
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM) Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Nguyen Duc Viet
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM) Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Dinh Ngoc Trinh
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM) Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Nguyen Thi Huong Giang
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM) Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Mai Thanh Phong
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM) Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| |
Collapse
|
17
|
Enhanced Photodynamic Suppression of Enterococcus faecalis Using Curcumin-Loaded Zeolite. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Yaashikaa PR, Devi MK, Kumar PS. Advances in the application of immobilized enzyme for the remediation of hazardous pollutant: A review. CHEMOSPHERE 2022; 299:134390. [PMID: 35339523 DOI: 10.1016/j.chemosphere.2022.134390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, ecofriendly, low-cost, and sustainable alternatives techniques have been focused on the effective removal of hazardous pollutants from the water streams. In this context, enzyme immobilization seems to be of specific interest to several researchers to develop novel, effective, greener, and hybrid strategies for the removal of toxic contaminants. Immobilization is a biotechnological tool, anchoring the enzymes on support material to enhance the stability and retain the structural conformation of enzymes for catalysis. Recyclability and reusability are the main merits of immobilized enzymes over free enzymes. Studies showed that immobilized enzyme laccase can be used up to 7 cycles with 66% efficiency, peroxidase can be recycled to 2 cycles with 50% efficiency, and also cellulase to 3 cycles with 91% efficiency. In this review, basic concepts of immobilization, different immobilization techniques, and carriers used for immobilization are summarized. In addition to that, the potential of immobilized enzymes as the bioremediation agents for the effective degradation of pollutants from the contaminated zone and the impact of different operating parameters are summarized in-depth. Further, this review provides future trends and challenges that have to be solved shortly for enhancing the potential of immobilized systems for large-scale industrial wastewater treatment.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - M Keerthana Devi
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| |
Collapse
|
19
|
Lu X, Liu L, Liu H, Tian G, Peng G, Zhuo L, Wang Z. Zeolite-X synthesized from halloysite nanotubes and its application in CO2 capture. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Fast anisotropic growth of the biomineralized zinc phosphate nanocrystals for a facile and instant construction of laccase@Zn 3(PO 4) 2 hybrid nanoflowers. Int J Biol Macromol 2022; 204:520-531. [PMID: 35167870 DOI: 10.1016/j.ijbiomac.2022.02.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 12/26/2022]
Abstract
Organic-inorganic hybrid nanoflowers (HNFs) of laccase@Zn3(PO4)2 were fabricated through a facile, simple, and rapid one-step strategy. In this process, laccase was involved in nucleation and fast anisotropic growth reactions with Zn (II) and phosphate ions. The average pore size of the prepared HNFs was 54.5 nm, and its BET-specific surface area was 59.5 m2 g-1. In comparison with the free laccase, the entrapped enzyme activity in the constructed HNFs was 86.4%. In addition, the hybrid biocatalyst displayed a maximum rate of reaction (Vmax) of 1640.2 ± 3.6 μmol min-1 with respect to the native enzyme. The constructed HNFs maintained 45.1% and 60% of the original laccase activity after 12 successive reusability cycles and 30 days of storage at 4 °C, respectively. The as-obtained HNFs demonstrated a high bioremoval percentage of Direct blue-71 (94.1%) within a 10-h-treatment at 40 °C and 15 mg l-1 of the dye concentration. The pseudo-first order and second order were the best-fitted kinetic models for the dye removal using Zn3(PO4)2 nanoflakes and the fabricated HNFs, respectively. Besides, liquid chromatography-mass spectrometry (LC-MS) revealed biotransformation of the dye into less toxic metabolites as verified by testing on some bacterial strains.
Collapse
|
21
|
Immobilized enzymes and cell systems: an approach to the removal of phenol and the challenges to incorporate nanoparticle-based technology. World J Microbiol Biotechnol 2022; 38:42. [PMID: 35043353 DOI: 10.1007/s11274-022-03229-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/04/2022] [Indexed: 12/07/2022]
Abstract
The presence of phenol in wastewater poses a risk to ecosystems and human health. The traditional processes to remove phenol from wastewater, although effective, have several drawbacks. The best alternative is the application of ecological biotechnology tools since they involve biological systems (enzymes and microorganisms) with moderate economic and environmental impact. However, these systems have a high sensitivity to environmental factors and high substrate concentrations that reduce their effectiveness in phenol removal. This can be overcome by immobilization-based technology to increase the performance of enzymes and bacteria. A key component to ensure successful immobilization is the material (polymeric matrices) used as support for the biological system. In addition, by incorporating magnetic nanoparticles into conventional immobilized systems, a low-cost process is achieved but, most importantly, the magnetically immobilized system can be recovered, recycled, and reused. In this review, we study the existing alternatives for treating wastewater with phenol, from physical and chemical to biological techniques. The latter focus on the immobilization of enzymes and microorganisms. The characteristics of the support materials that ensure the viability of the immobilization are compared. In addition, the challenges and opportunities that arise from incorporating magnetic nanoparticles in immobilized systems are addressed.
Collapse
|
22
|
Ameri A, Asadi F, Shakibaie M, Ameri A, Forootanfar H, Ranjbar M. Hydroxyapatite/Glycyrrhizin/Lithium-Based Metal-Organic Framework (HA/GL/Li-MOF) Nanocomposite as Support for Immobilization of Thermomyces lanuginosus Lipase. Appl Biochem Biotechnol 2022; 194:2108-2134. [PMID: 35032306 DOI: 10.1007/s12010-022-03800-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2021] [Indexed: 11/30/2022]
Abstract
The hydroxyapatite/glycyrrhizin/lithium-based metal-organic framework (HA/GL/Li-MOF) nanocomposites were synthesized via the hydrothermal method in the presence of lecithin and glycyrrhizin. Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS) were applied for characterization of the fabricated nanocomposites. The HA/GL/Li-MOF and Li-MOF nanocomposites were employed as support for immobilization of Thermomyces lanuginosus lipase (TLL). The Plackett-Burman and Box-Behnken designs were used for screening and optimizing of variables affecting the immobilization conditions, respectively. The optimum specific activity of immobilized TLL on HA/GL/Li-MOF and Li-MOF nanocomposites (41.8 ± 1.2 U/mg and 39.4 ± 3.1 U/mg, respectively) was predictably determined at support concentration of 0.5 mg/mL, glutaraldehyde concentration of 5 mM, and enzyme activity of 20 U/mg, while the specific activities of TLL@ HA/GL/Li-MOF and TLL@Li-MOF were experimentally found to be 39.5 ± 3.7 U/mg and 38.5 ± 2.3 U/mg, respectively. The stability results showed that the TLL@ HA/GL/Li-MOF has suitable stability against pH and thermal denaturation. However, the immobilized TLL on Li-MOF represented lower stability compared with that of the HA/GL/Li-MOF. The immobilized TLL on HA/GL/Li-MOF maintained near 70% of its original activity after 15 days' storage and during 5 runs of application. In addition, TLL@HA/GL/Li-MOF exhibited higher enzyme-substrate affinity (Km, 10.1 mM) compared to that of TLL@Li-MOF (Km, 23.4 mM). Therefore, these findings demonstrated the potential use of HA/GL/Li-MOF nanocomposites for enzyme immobilization.
Collapse
Affiliation(s)
- Atefeh Ameri
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fahimeh Asadi
- Department of Chemistry, University of Vali-e-Asr Rafsanjan, Kerman, Iran
| | - Mojtaba Shakibaie
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Alieh Ameri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mehdi Ranjbar
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|