1
|
El-Gammal OA, Saad DA, El-Nahass MN, Shalabi K, Abdallah YM. Bishydrazone ligand and its Zn-complex: synthesis, characterization and estimation of scalability inhibition mitigation effectiveness for API 5L X70 carbon steel in 3.5% NaCl solutions. RSC Adv 2024; 14:13258-13276. [PMID: 38655470 PMCID: PMC11037239 DOI: 10.1039/d4ra00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/13/2024] [Indexed: 04/26/2024] Open
Abstract
Bishydrazone ligand, 2,2'-thiobis(N'-((E)-thiophen-2-ylmethylene) acetohydrazide), H2TTAH and its Zn- complex were prepared and characterized through elemental analysis and various spectroscopic performances as well as (IR, 1H and 13C NMR, mass and (UV-Vis) measurements. The synthesized complex exhibited the molecular formula [Zn2(H2TTAH)(OH)4(C5H5N)3C2H5OH] (Zn-H2TTAH). To assess their potential as anti-corrosion materials, the synthesized particles were assessed for their effectiveness for API 5L X70 C-steel corrosion in a 3.5% NaCl solution using electrochemical methods such as potentiodynamic polarization (PP) and electrochemical impedance spectroscopy (EIS). Additionally, X-ray photoelectron spectroscopy (XPS) was employed to examine the steel surface treated with the tested inhibitors, confirming the establishment of an adsorbed protecting layer. The results obtained from the PP plots indicated that both H2TTAH and Zn-H2TTAH act as mixed-type inhibitors. At a maximum concentration of 1 × 10-4 M, H2TTAH and Zn-H2TTAH exhibited inhibition efficiencies of 93.4% and 96.1%, respectively. The adsorption of these inhibitors on the steel surface followed the Langmuir adsorption isotherm, and it was determined to be chemisorption. DFT calculations were achieved to regulate the electron donation ability of H2TTAH and Zn-H2TTAH molecules. Additionally, Monte Carlo (MC) simulations were conducted to validate the adsorption configurations on the steel surface and gain insight into the corrosion inhibition mechanism facilitated by these molecules.
Collapse
Affiliation(s)
- Ola A El-Gammal
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35111 Egypt
| | - Dina A Saad
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35111 Egypt
| | - Marwa N El-Nahass
- Department of Chemistry, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Kamal Shalabi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
| | - Yasser M Abdallah
- Delta University for Science and Technology Gamasa Mansoura 11152 Egypt
| |
Collapse
|
2
|
Ahchouch H, Chaouiki A, Al-Moubaraki AH, Al-Ahmari JM, Al-Ghamdi AA, Bammou L, Belkhaouda M, Chafiq M, Ko YG. Fabrication of Protective Organic Layer Using Schiff-Base Metal Complex Responsible for Excellent Corrosion Performance: Experimental and Theoretical Perspectives. ACS OMEGA 2024; 9:15015-15029. [PMID: 38585106 PMCID: PMC10993390 DOI: 10.1021/acsomega.3c09097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/19/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024]
Abstract
The effectiveness of a copper(II) complex with a Schiff base derived from 2-amino-4-phenyl-5-methylthiazole and salicylaldehyde (APMS) as a corrosion inhibitor for XC18 steel in an HCl solution was investigated. Experimental findings indicated a slight negative correlation between inhibition efficiencies in 1 M HCl and temperature but a positive correlation with both inhibitor concentration and immersion time, respectively. The weight loss measurement revealed that APMS achieved a maximum inhibition rate of 92.07% at 303 K. A fitting analysis demonstrated that APMS adheres to the Langmuir adsorption isotherm. The electrochemical results revealed an enhanced inhibitive performance of APMS, with the efficiency increasing as concentrations increased, ultimately reaching a peak of 94.47% at 5 × 10-3 mol L-1. Potentiodynamic polarization measurements revealed that APMS acted as a mixed-type inhibitor without affecting the corrosion mechanism. Scanning electron microscopy investigations of the metal surfaces corroborated the presence of an adsorbed organic layer. Advanced theoretical calculations utilizing density functional theory and first-principles density-functional tight-binding were conducted to gain insights into the behavior of APMS on the metal surface. APMS derives its advantages from crucial inter- and intramolecular interactions, resulting in the formation of a resilient adsorption layer, in line with the experimental findings. It is found that the presence of the APMS-based inhibitor exhibits a significant synergistic corrosion inhibition effect. The current study offers a design direction for enhancing the structural characteristics of Schiff base metal complexes, laying the groundwork for multifunctional frameworks to minimize corrosion rates with considerations for real-world use and cost-efficiency. The ability to replace harmful, expensive constituents with sustainable, and cost-effective organic alternatives represents a significant outcome of this study.
Collapse
Affiliation(s)
- Hamid Ahchouch
- Laboratory
of Applied Chemistry and Environment, ENSA,
University Ibn Zohr, P.O. Box 1136, Agadir 80000, Morocco
| | - Abdelkarim Chaouiki
- Materials
Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Aisha H. Al-Moubaraki
- Department
of Chemistry, Faculty of Sciences-Alfaisaliah Campus, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Jamilah M. Al-Ahmari
- Department
of Chemistry, Faculty of Sciences-Alfaisaliah Campus, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Azza A. Al-Ghamdi
- Department
of Chemistry, Faculty of Sciences-Alfaisaliah Campus, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Lahcen Bammou
- Laboratory
of Applied Chemistry and Environment, ENSA,
University Ibn Zohr, P.O. Box 1136, Agadir 80000, Morocco
- Higher
School of Education and Training, Agadir 80000, Morocco
| | - M’hammed Belkhaouda
- Laboratory
of Applied Chemistry and Environment, ENSA,
University Ibn Zohr, P.O. Box 1136, Agadir 80000, Morocco
- Laboratory
of Sciences and Didactic of Sciences, CRMEF, Inzegane 80000, Morocco
| | - Maryam Chafiq
- Materials
Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Young Gun Ko
- Materials
Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
3
|
Bedair MA, Abuelela AM, Alshareef M, Owda M, Eliwa EM. Ethyl ester/acyl hydrazide-based aromatic sulfonamides: facile synthesis, structural characterization, electrochemical measurements and theoretical studies as effective corrosion inhibitors for mild steel in 1.0 M HCl. RSC Adv 2022; 13:186-211. [PMID: 36605653 PMCID: PMC9764999 DOI: 10.1039/d2ra05939h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
In this research paper, aromatic sulfonamide-derived ethyl ester (p-TSAE) and its acyl hydrazide (p-TSAH) were directly synthesized, characterized, and employed for the first time as prospective anticorrosive agents to protect mild steel in 1.0 M HCl conditions. The corrosion efficiency was probed by electrochemical methods including polarization, impedance, and frequency modulation measurements. Optimal efficiencies of 94% and 92% were detected for the hydrazide and ester, respectively, revealing excellent corrosion inhibition. Moreover, both the hydrazide and ester molecules combat the cathodic and anodic reactions correspondingly in a mixed-type manner. The electron transfer (ET) at the inhibitor/metal interface was evaluated using DFT at the B3LYP/6-31g(d,p) level. Natural bond orbital analysis (NBO) and frontier molecular orbital analysis (FMO) calculations showed superior capabilities of the synthesized inhibitors to easily reallocate charge into the metal surface. However, the hydrazide molecules showed slightly better inhibition efficiency than the ester due to the strong interaction between the lone pairs of the nitrogen atoms and the d-orbitals of the metal. The chemical hardness of the hydrazide and ester are 2.507 and 2.511 eV, respectively, in good accordance with the recorded electrochemical inhibition efficiencies for both molecules. Good and straightforward correlations between the experiments and calculations are obtained.
Collapse
Affiliation(s)
- Mahmoud A. Bedair
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar UniversityNasr City 11884CairoEgypt,College of Science and Arts, University of BishaP.O. Box 101Al-Namas 61977Saudi Arabia
| | - Ahmed M. Abuelela
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar UniversityNasr City 11884CairoEgypt
| | - Mubark Alshareef
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura UniversityMakkah 24230Saudi Arabia
| | - Medhat Owda
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar UniversityNasr City 11884CairoEgypt
| | - Essam M. Eliwa
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar UniversityNasr City 11884CairoEgypt
| |
Collapse
|
4
|
Synthesis, Characterization, Thermodynamic Analysis and Quantum Chemical Approach of Branched N, N′-bis(p-hydroxybenzoyl)-Based Propanediamine and Triethylenetetramine for Carbon Steel Corrosion Inhibition in Hydrochloric Acid Medium. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractThe influence of branched N, N′-bis(p-hydroxybenzoyl) containing propylenediamine (PDA) and triethylenetetramine (TETA) composites for corrosion inhibition of carbon steel in acidic solution (1 M HCl) was investigated using several quantum chemical, electrochemical impedance spectroscopy and potentiodynamic polarization as electrochemical techniques. The investigated molecules were posteriorly characterized by proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared spectroscopy (FTIR) while the surfaces of carbon steel test coupons were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The obtained results revealed that the two amino compounds, N, N′-bis(p-hydroxybenzoyl) propanediamine (N, N′-HBPDA) and N, N′-bis(p-hydroxybenzoyl) triethylenetetramine (N, N′-HBTETA), have significant efficiency toward steel corrosion attack and its inhibition performance was significantly boosted by increasing concentration of di- and tetramine containing inhibitors. The two inhibitors achieved a maximum corrosion inhibition efficiency of 99.1% as indicated from polarization measurements. The isotherm feature of Langmuir adsorption appeared to be proper factor for associating the experimental gains with an applicable mechanism of inhibition process. The free energy ∆Gads was calculated to be − 27.5, 29.1 kJ/mol based on the adsorption isotherm model, indicating physical adsorption on the carbon steel surface. Further, images of the morphological analysis exhibited various features of attack owing to the aggressive medium and the employed concentration of the inhibitor. These synthesized amines supplied many favorable scores in the fabrication of functional mixed-type inhibitors. The computational studies reveal that N, N′-HBPDA and N, N′-HBTETA molecules could absorb via several lone pairs and π clouds, confirming their ability to be good corrosion inhibitors.
Collapse
|
5
|
Melhi S, Bedair MA, Alosaimi EH, Younes AAO, El-Shwiniy WH, Abuelela AM. Effective corrosion inhibition of mild steel in hydrochloric acid by newly synthesized Schiff base nano Co(ii) and Cr(iii) complexes: spectral, thermal, electrochemical and DFT (FMO, NBO) studies. RSC Adv 2022; 12:32488-32507. [PMID: 36425733 PMCID: PMC9661184 DOI: 10.1039/d2ra06571a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Two new cobalt(ii) and chromium(iii) complexes were synthesized and characterized by FT-IR, 1HNMR, UV, elemental analysis, TGA, conductivity, XRD, SEM, and magnetic susceptibility measurements. Structural analysis revealed a bi-dentate chelation and octahedral geometry for the synthesized complexes. The optical band gap of the Co(ii)-L and Cr(iii)-L complexes was found to be 3.00 and 3.25 eV, respectively revealing semiconducting properties. The X-ray diffraction patterns showed nano-crystalline particles for the obtained complexes. In addition, the synthesized metal complexes were examined as corrosion inhibitors for mild steel in HCl solution. The electrochemical investigations showed a maximum inhibition efficiency of 96.60% for Co(ii)-L and 95.45% for Cr(iii)-L where both complexes acted as mixed-type inhibitors. Frontier Molecular orbital (FMO) and Natural bond orbital (NBO) computations showed good tendency of the ligand to donate electrons to the metal through nitrogen atoms while the resultant complexes tended to donate electrons to mild steel more effectively through oxygen atoms and phenyl groups. A comparison between experimental and theoretical findings was considered through the discussion.
Collapse
Affiliation(s)
- Saad Melhi
- Department of Chemistry, College of Science, University of Bisha P.O. Box 511 Bisha 61922 Saudi Arabia
| | - Mahmoud A Bedair
- College of Science and Arts, University of Bisha P.O. Box 101 Al-Namas 61977 Saudi Arabia
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Eid H Alosaimi
- Department of Chemistry, College of Science, University of Bisha P.O. Box 511 Bisha 61922 Saudi Arabia
| | - Ayman A O Younes
- Department of Chemistry, College of Science, University of Bisha P.O. Box 511 Bisha 61922 Saudi Arabia
| | - Walaa H El-Shwiniy
- Department of Chemistry, College of Science, University of Bisha P.O. Box 511 Bisha 61922 Saudi Arabia
- Department of Chemistry, Faculty of Science, Zagazig University Zagazig 44519 Egypt
| | - Ahmed M Abuelela
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar University Nasr City 11884 Cairo Egypt
| |
Collapse
|
6
|
El-Lateef HMA, El-Dabea T, Khalaf MM, Abu-Dief AM. Innovation of Imine Metal Chelates as Corrosion Inhibitors at Different Media: A Collective Study. Int J Mol Sci 2022; 23:9360. [PMID: 36012623 PMCID: PMC9409127 DOI: 10.3390/ijms23169360] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 01/03/2023] Open
Abstract
The corrosion inhibition of transition metal chelates derived from Schiff base ligands was tested for (mild, copper, stainless, aluminum and carbon) steel in various concentrations of (HCl, HNO3 and H2SO4) acidic medium at 25 °C through (weight loss, potentiodynamic polarization, polarization curves, electrochemical impedance spectroscopy (EIS) and open circuit potential measurements (OCP)) techniques. The studied compounds were identified with various spectral, analytical and physico-chemical techniques. It was observed that the investigated compounds had a significant inhibitory impact on the corrosion of diverse steels in the medium investigated. The analysis shows that increasing the dose of the studied complexes improves the corresponding inhibitory efficiency values. Negative results of Gibb's free adsorption energy (ΔGads0) prove the suppression process's spontaneous and physical adsorption, which contradicts the Langmuir adsorption isotherm. As a result of this insight, a novel bridge between nuclearity driven coordinated inorganic chemistry and materials, as well as corrosion control, has been built. This review provides an overview of the use of Schiff bases and associated transition metals as potential corrosion inhibitors, including the factors that influence their application.
Collapse
Affiliation(s)
- Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt
| | - Tarek El-Dabea
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt
| | - Mai M. Khalaf
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt
| | - Ahmed M. Abu-Dief
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt
- Chemistry Department, College of Science, Taibah University, Madinah 344, Saudi Arabia
| |
Collapse
|
7
|
Peng Q, Li L, Hui W, Hu A, Wang X, Wang H, Xia Y. Effects of different ligand modifications on catalytic transfer hydrogenation of Lewis acid catalysts: Quantum chemical studies on the case of ZrCl2-Sal(ph)en. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
DFT calculations, molecular simulations, and electrochemical investigations of Nature-inspired phytochemical attributes of Achillea Millefolium plants for the construction of effective zinc-based organic anti-corrosion layer on carbon steel. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.09.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Deef Allah M, Abdelhamed S, Soliman KA, El-Etre MA. The performance of three novel Gemini surfactants as inhibitors for acid steel corrosion: experimental and theoretical studies. RSC Adv 2021; 11:37482-37497. [PMID: 35496412 PMCID: PMC9043746 DOI: 10.1039/d1ra07449k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
Adipic acid was used to synthesize three nonionic Gemini surfactants containing different numbers of propylene oxide units in their structures. The produced surfactants have been characterized employing FTIR and 1H-NMR spectra. Some of the physical properties of them, namely, surface tension, maximum surface excess concentration, surface pressure, critical micelle concentration, and the minimal area of the surface taken by a single molecule, were computed. The inhibitory effect of the synthesized surfactants on the corrosion of C-steel (C45) in 1.0 M HCl solution was studied. Gravimetric and electrochemical methods were used for corrosion rate measurements. The outcomes acquired from the used methods showed that every one of the three surfactants works as a strong inhibitor for steel acidic corrosion. By raising surfactant concentration and exposure time, the inhibition proficiency improves. The inhibition efficiency exceeded 90% for the three compounds. The higher the propylene oxide units contained in the surfactant molecule the higher is its inhibition efficiency. Based on the findings, a mechanism for inhibitory action was proposed. Moreover, the density functional theory (DFT) and molecular electrostatic potential (MEP) were investigated for the three inhibitors. The calculated parameters were correlated with the inhibition efficiency.
Collapse
Affiliation(s)
- Mohamed Deef Allah
- Basic Science Department, Faculty of Engineering, Benha University Shoubra Egypt
| | - Samar Abdelhamed
- Basic Science Department, Faculty of Engineering, Benha University Shoubra Egypt
| | - Kamal A Soliman
- Chemistry Department, Faculty of Science, Benha University Benha Egypt
| | - Mona A El-Etre
- Basic Science Department, Faculty of Engineering, Benha University Benha Egypt
| |
Collapse
|