1
|
Mohapatra S, Das HT, Tripathy BC, Das N. Recent Developments in Electrodeposition of Transition Metal Chalcogenides-Based Electrode Materials for Advance Supercapacitor Applications: A Review. CHEM REC 2024; 24:e202300220. [PMID: 37668292 DOI: 10.1002/tcr.202300220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/19/2023] [Indexed: 09/06/2023]
Abstract
High-performance supercapacitive electrode materials have received significant attention from researchers worldwide, thus aiming for comparable performance similar to the extensively used rechargeable batteries. For emerging energy storage technologies like flexible supercapacitors, transition metal chalcogenides (TMCs) have been in the spotlight due to their promising electrochemical features compared to other electrode materials. Among the synthesis techniques, electrodeposition-mediated preparation of thin films of TMCs offered an affordable binder-free approach for electrode fabrication that effectively improved the supercapacitor performance. Hence, this review mainly focussed on the electrodeposition-based syntheses of single/ multinary chalcogenides and their composites for supercapacitors applications. Further, the effects of different deposition parameters were discussed for boosting the supercapacitor performance. Finally, this review outlined the existing challenges and future perspectives in this research domain, which will assist the upcoming exploration in the energy storage field.
Collapse
Affiliation(s)
- Subhashree Mohapatra
- Department of Chemistry, Utkal University, Vani Vihar, Bhubaneswar, 751004, India
| | - Himadri Tanaya Das
- Centre for Advanced Materials and Applications, Utkal University, Vani Vihar, Bhubaneswar, 751004, India
| | - Bankim Chandra Tripathy
- Department of Hydro & Electrometallurgy, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
| | - Nigamananda Das
- Department of Chemistry, Utkal University, Vani Vihar, Bhubaneswar, 751004, India
- Centre for Advanced Materials and Applications, Utkal University, Vani Vihar, Bhubaneswar, 751004, India
| |
Collapse
|
2
|
Rajesh JA, Kim JY, Kang SH, Ahn KS. Facile Synthesis of Microsphere-like Co 0.85Se Structures on Nickel Foam for a Highly Efficient Hydrogen Evolution Reaction. MICROMACHINES 2023; 14:1905. [PMID: 37893342 PMCID: PMC10608889 DOI: 10.3390/mi14101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Microsphere-shaped cobalt selenide (Co0.85Se) structures were efficiently synthesized via a two-step hydrothermal process. Initially, cobalt hydroxide fluoride (Co(OH)F) microcrystals were prepared using a hydrothermal method. Subsequently, Co0.85Se microsphere-like structures were obtained through selenization. Compared to Co(OH)F, the microsphere-like Co0.85Se structure exhibited outstanding catalytic activity for the hydrogen evolution reaction (HER) in a 1.0 M KOH solution. Electrocatalytic experiments demonstrated an exceptional HER performance by the Co0.85Se microspheres, characterized by a low overpotential of 148 mV and a Tafel slope of 55.7 mV dec-1. Furthermore, the Co0.85Se electrocatalyst displayed remarkable long-term stability, maintaining its activity for over 24 h. This remarkable performance is attributed to the excellent electrical conductivity of selenides and the highly electroactive sites present in the Co0.85Se structure compared to Co(OH)F, emphasizing its promise for advanced electrocatalytic applications.
Collapse
Affiliation(s)
- John Anthuvan Rajesh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea; (J.A.R.); (J.-Y.K.)
| | - Jae-Young Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea; (J.A.R.); (J.-Y.K.)
| | - Soon-Hyung Kang
- Department of Chemistry Education, Chonnam National University, Gwangju 500-757, Republic of Korea;
| | - Kwang-Soon Ahn
- School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea; (J.A.R.); (J.-Y.K.)
| |
Collapse
|
3
|
Wang D, Sun Z, Han X. Bidirectional activation technology towards foam-like carbon nanosheets and its coupling with oxygen-deficient α‐MnO2 for ammonium-ion hybrid supercapacitors. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
4
|
Kumar J, Neiber RR, Abbas Z, Soomro RA, BaQais A, Amin MA, El-Bahy ZM. Hierarchical NiMn-LDH Hollow Spheres as a Promising Pseudocapacitive Electrode for Supercapacitor Application. MICROMACHINES 2023; 14:487. [PMID: 36838187 PMCID: PMC9964479 DOI: 10.3390/mi14020487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Layered double hydroxides (LDH) are regarded as attractive pseudocapacitive materials due to their impressive capacitive qualities that may be adjustable to their morphological features. However, the layered structure of LDH renders them susceptible to structural aggregation, which inhibits effective electrolyte transport and limits their practical applicability after limited exposure to active areas. Herein, we propose a simple template-free strategy to synthesize hierarchical hollow sphere NiMn-LDH material with high surface area and exposed active as anode material for supercapacitor application. The template-free approach enables the natural nucleation of Ni-Mn ions resulting in thin sheets that self-assemble into a hollow sphere, offering expended interlayer spaces and abundant redox-active active sites. The optimal NiMn-LDH-12 achieved a specific capacitance of 1010.4 F g-1 at a current density of 0.2 A g-1 with capacitance retention of 70% at 5 A g-1 after 5000 cycles with lower charge transfer impedance. When configured into an asymmetric supercapacitors (ASC) device as NiMn-LDH//AC, the material realized a specific capacitance of 192.4 F g-1 at a current density of 0.2 A g-1 with a good energy density of 47.9 Wh kg-1 and a power density of 196.8 W kg-1. The proposed morphological-tuning route is promising for designing template-free NiMn-LDHs spheres with practical pseudocapacitive characteristics.
Collapse
Affiliation(s)
- Jai Kumar
- College of Chemical Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Rana R. Neiber
- College of Chemical Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green, Process, and Engi-neering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zaheer Abbas
- Metallurgy and Materials Engineering Department, University of Engineering and Technology, Taxila 47050, Pakistan
| | - Razium Ali Soomro
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Amal BaQais
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohammed A. Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Zeinhom M. El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| |
Collapse
|
5
|
Nickel-cobalt selenide nanosheets anchored on graphene for high performance all-solid-state asymmetric supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Efficient desalination system for brackish water incorporating biomass-derived porous material. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|