1
|
Khan J, Rezo V, Vincze T, Weis M, Momin SA, El-Atab N, Jaafar M. Flexible and highly selective NO 2 gas sensor based on direct-ink-writing of eco-friendly graphene oxide for smart wearable application. CHEMOSPHERE 2024; 367:143618. [PMID: 39490758 DOI: 10.1016/j.chemosphere.2024.143618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Nitrogen dioxide (NO2) is a major cause of respiratory disorders in outdoor and indoor environments. Real-time NO2 monitoring using nonintrusive wearable devices can save lives and provide valuable health data. This study reports a room-temperature, wearable, and flexible smart NO2 gas sensor fabricated via cost-effective printing technology on a polyimide substrate. The sensor uses alkali lignin with edge-oxidised graphene oxide (EGO-AL) ink, demonstrating a sensitivity of 1.70% ppm⁻1 and a detection limit of 12.70 ppb, with excellent selectivity towards NO2. The high sensing properties are attributed to labile oxygen functional groups from GO and alkali lignin, offering abundant interacting sites for NO2 adsorption and electron transfer. The sensor fully recovers to the baseline after heat treatment at 150 °C, indicating its reusability. Integration into lab coats showcased its wearable application, utilising a flexible printed circuit board to wirelessly alert the wearer via cell phone to harmful NO2 levels (>3 ppm) in the environment. This smart sensing application underscores the potential for practical, real-time air quality monitoring, personal safety enhancement, and health management.
Collapse
Affiliation(s)
- Junaid Khan
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal Penang, 14300, Malaysia; MIND-IN2UB, Department of Electronics and Biomedical Engineering, University of Barcelona, Spain; Institute of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, Bratislava, 81219, Slovakia
| | - Vratislav Rezo
- Institute of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, Bratislava, 81219, Slovakia
| | - Tomáš Vincze
- Institute of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, Bratislava, 81219, Slovakia
| | - Martin Weis
- Institute of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, Bratislava, 81219, Slovakia
| | - Syed Abdul Momin
- Smart, Advanced Memory Devices and Applications (SAMA) Laboratory, Electrical and Computer Engineering Program, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Kingdom of Saudi Arabia
| | - Nazek El-Atab
- Smart, Advanced Memory Devices and Applications (SAMA) Laboratory, Electrical and Computer Engineering Program, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Kingdom of Saudi Arabia
| | - Mariatti Jaafar
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal Penang, 14300, Malaysia.
| |
Collapse
|
2
|
Krivačić S, Boček Ž, Zubak M, Kojić V, Kassal P. Flexible ammonium ion-selective electrode based on inkjet-printed graphene solid contact. Talanta 2024; 279:126614. [PMID: 39094532 DOI: 10.1016/j.talanta.2024.126614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Miniaturization and mass-production of potentiometric sensor systems is paving the way towards distributed environmental sensing, on-body measurements and industrial process monitoring. Inkjet printing is gaining popularity as a highly adaptable and scalable production technique. Presented here is a scalable and low-cost route for flexible solid-contact ammonium ion-selective electrode fabrication by inkjet printing. Utilization of inkjet-printed melamine-intercalated graphene nanosheets as the solid-contact material significantly improved charge transport, while evading the detrimental water-layer formation. External polarization was investigated as a means of improving the inter-electrode reproducibility: the standard deviations of E0 values were reduced after electrode polarization, the linear region of the response was extended to the range 10-1-10-6 M of NH4Cl and LODs reduced to 0.88 ± 0.17 μM. Finally, we have shown that the electrodes are adequate for measurements in a complex real sample: ammonium concentration was determined in landfill leachate water, with less than 4 % deviation from the reference method.
Collapse
Affiliation(s)
- Sara Krivačić
- University of Zagreb, Faculty of Chemical Engineering & Technology, Trg Marka Marulića 19, 10000, Zagreb, Croatia
| | - Željka Boček
- University of Zagreb, Faculty of Chemical Engineering & Technology, Trg Marka Marulića 19, 10000, Zagreb, Croatia
| | - Marko Zubak
- University of Zagreb, Faculty of Chemical Engineering & Technology, Trg Marka Marulića 19, 10000, Zagreb, Croatia
| | - Vedran Kojić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia; HIS d.o.o., Donja Višnjica 61D, 42255, Donja Višnjica, Croatia
| | - Petar Kassal
- University of Zagreb, Faculty of Chemical Engineering & Technology, Trg Marka Marulića 19, 10000, Zagreb, Croatia.
| |
Collapse
|
3
|
Orzari LO, Silva LRGE, de Freitas RC, Brazaca LC, Janegitz BC. Lab-made disposable screen-printed electrochemical sensors and immunosensors modified with Pd nanoparticles for Parkinson's disease diagnostics. Mikrochim Acta 2024; 191:76. [PMID: 38172448 DOI: 10.1007/s00604-023-06158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
A new conductive ink based on the addition of carbon black to a poly(vinyl alcohol) matrix is developed and investigated for electrochemical sensing and biosensing applications. The produced devices were characterized using morphological and electrochemical techniques and modified with Pd nanoparticles to enhance electrical conductivity and reaction kinetics. With the aid of chemometrics, the parameters for metal deposition were investigated and the sensor was applied to the determination of Parkinson's disease biomarkers, specifically epinephrine and α-synuclein. A linear behavior was obtained in the range 0.75 to 100 μmol L-1 of the neurotransmitter, and the device displayed a limit of detection (LOD) of 0.051 μmol L-1. The three-electrode system was then tested using samples of synthetic cerebrospinal fluid. Afterward, the device was modified with specific antibodies to quantify α-synuclein using electrochemical impedance spectroscopy. In phosphate buffer, a linear range was obtained for α-synuclein concentrations from 1.5 to 15 μg mL-1, with a calculated LOD of 0.13 μg mL-1. The proposed immunosensor was also applied to blood serum samples, and, in this case, the linear range was observed from 6.0 to 100.5 μg mL-1 of α-synuclein, with a LOD = 1.3 µg mL-1. Both linear curves attend the range for the real diagnosis, demonstrating its potential application to complex matrices.
Collapse
Affiliation(s)
- Luiz Otávio Orzari
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, Araras, SP, 13600-970, Brazil
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba, SP, 18052-780, Brazil
| | - Luiz Ricardo Guterres E Silva
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, Araras, SP, 13600-970, Brazil
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba, SP, 18052-780, Brazil
| | - Rafaela Cristina de Freitas
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, Araras, SP, 13600-970, Brazil
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba, SP, 18052-780, Brazil
| | - Laís Canniatti Brazaca
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Bruno Campos Janegitz
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, Araras, SP, 13600-970, Brazil.
| |
Collapse
|
4
|
Khan J, Mariatti M, Zubir SA, Rusli A, Manaf AA, Khirotdin RK. Eco-friendly alkali lignin-assisted water-based graphene oxide ink and its application as a resistive temperature sensor. NANOTECHNOLOGY 2023; 35:055301. [PMID: 37879329 DOI: 10.1088/1361-6528/ad06d4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
Inkjet-printable ink formulated with graphene oxide (GO) offers several advantages, including aqueous dispersion, low cost, and environmentally friendly production. However, water-based GO ink encounters challenges such as high surface tension, low wetting properties, and reduced ink stability over prolonged storage time. Alkali lignin, a natural surfactant, is promising in improving GO ink's stability, wettability, and printing characteristics. The concentration of surfactant additives is a key factor in fine-tuning GO ink's stability and printing properties. The current study aims to explore the detailed effects of alkali lignin concentration and optimize the overall properties of graphene oxide (GO) ink for drop-on-demand thermal inkjet printing. A meander-shaped temperature sensor electrode was printed using the optimized GO ink to demonstrate its practical applicability for commercial purposes. The sensing properties are evaluated using a simple experimental setup across a range of temperatures. The findings demonstrate a significant increase in zeta potential by 25% and maximum absorption by 84.3%, indicating enhanced stability during prolonged storage with an optimized alkali lignin concentration compared to the pure GO dispersions. The temperature sensor exhibits a remarkable thermal coefficient of resistance of 1.21 within the temperature range of 25 °C-52 °C, indicative of excellent sensitivity, response, and recovery time. These results highlight the potential of alkali lignin as a natural surfactant for improving the performance and applicability of inkjet-printable GO inks in various technological applications.
Collapse
Affiliation(s)
- Junaid Khan
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal Penang, 14300, Malaysia
| | - M Mariatti
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal Penang, 14300, Malaysia
| | - Syazana A Zubir
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal Penang, 14300, Malaysia
| | - Arjulizan Rusli
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal Penang, 14300, Malaysia
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Center, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Rd Khairilhijra Khirotdin
- Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
| |
Collapse
|
5
|
Chen X, Wang X, Pang Y, Bao G, Jiang J, Yang P, Chen Y, Rao T, Liao W. Printed Electronics Based on 2D Material Inks: Preparation, Properties, and Applications toward Memristors. SMALL METHODS 2023; 7:e2201156. [PMID: 36610015 DOI: 10.1002/smtd.202201156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Printed electronics, which fabricate electrical components and circuits on various substrates by leveraging functional inks and advanced printing technologies, have recently attracted tremendous attention due to their capability of large-scale, high-speed, and cost-effective manufacturing and also their great potential in flexible and wearable devices. To further achieve multifunctional, practical, and commercial applications, various printing technologies toward smarter pattern-design, higher resolution, greater production flexibility, and novel ink formulations toward multi-functionalities and high quality have been insensitively investigated. 2D materials, possessing atomically thin thickness, unique properties and excellent solution-processable ability, hold great potential for high-quality inks. Besides, the great variety of 2D materials ranging from metals, semiconductors to insulators offers great freedom to formulate versatile inks to construct various printed electronics. Here, a detailed review of the progress on 2D material inks formulation and its printed applications has been provided, specifically with an emphasis on emerging printed memristors. Finally, the challenges facing the field and prospects of 2D material inks and printed electronics are discussed.
Collapse
Affiliation(s)
- Xiaopei Chen
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiongfeng Wang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yudong Pang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guocheng Bao
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jie Jiang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Peng Yang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
- College of Integrated Circuits and Optoelectronic Chips, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yuankang Chen
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tingke Rao
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wugang Liao
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
6
|
Kolb CG, Lehmann M, Kulmer D, Zaeh MF. Modeling of the stability of water-based graphite dispersions using polyvinylpyrrolidone on the basis of the DLVO theory. Heliyon 2022; 8:e11988. [PMID: 36561674 PMCID: PMC9763744 DOI: 10.1016/j.heliyon.2022.e11988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 12/10/2022] Open
Abstract
The applications of graphite nanoparticle dispersions emerge due to the increasing importance of printed electronics and microelectronics, lithium-ion batteries, and supercapacitors. Promising technologies are inkjet printing processes, which are significantly influenced by the dispersion stability. Achieving stability is particularly challenging for nanoparticle dispersions due to the strong attractive forces emanating from the large particle surfaces. Despite the significance attributed to stability, it is predominantly investigated empirically. The only existing model to mathematically describe interparticle forces is given by the DLVO theory. This paper uses the extended DLVO theory to model the stability of aqueous graphite dispersions. Furthermore, the influences arising from an electrosterically stabilizing dispersant, in this case polyvinylpyrrolidone (PVP), were incorporated in the model. Experimentally data obtained from sedimentation analyses concur with the DLVO theory prediction. Due to the universality of the model, it is expected to be applicable to different material and dispersant systems.
Collapse
|
7
|
Giasafaki D, Mitzithra C, Belessi V, Filippakopoulou T, Koutsioukis A, Georgakilas V, Charalambopoulou G, Steriotis T. Graphene-Based Composites with Silver Nanowires for Electronic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193443. [PMID: 36234570 PMCID: PMC9565487 DOI: 10.3390/nano12193443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 05/27/2023]
Abstract
Graphene/metal nanocomposites have shown a strong potential for use in electronic applications. In particular, the combination of silver nanowires (AgNWs) with graphene derivatives leads to the formation of an efficient conductive network, thus improving the electrical properties of a composite. This work focused on developing highly conductive hydrophilic hybrids of simultaneously functionalized and reduced graphene oxide (f-rGO) and AgNWs in different weight ratios by following two different synthetic routes: (a) the physical mixture of f-rGO and AgNWs, and (b) the in situ reduction of GO in the presence of AgNWs. In addition, the role of AgNWs in improving the electrical properties of graphene derivatives was further examined by mixing AgNWs with a hybrid of few-layered graphene with functionalized multiwalled carbon nanotubes (FLG/MWNT-f-OH). The studied materials showed a remarkable improvement in the overall electrical conductivity due to the synergistic effect of their components, which was proportional to the percentage of Ag and dependent on the procedure of the hybrid formation. One of the f-rGO/AgNWs composites was also selected for the preparation of gravure printing inks that were tested to determine their rheological and printing properties. All of the f-rGO/AgNWs composites were shown to be very promising materials for use as conductive inks for flexible electronics.
Collapse
Affiliation(s)
- Dimitra Giasafaki
- National Centre for Scientific Research “Demokritos”, 15341 Agia Paraskevi, Greece
| | - Christina Mitzithra
- National Centre for Scientific Research “Demokritos”, 15341 Agia Paraskevi, Greece
| | - Vassiliki Belessi
- Department of Graphic Design and Visual Communication, Graphic Arts Technology Study Direction, University of West Attica, 12243 Egaleo, Greece
- Laboratory of Electronic Devices and Materials, Department of Electrical and Electronic Engineering, University of West Attica, 12244 Egaleo, Greece
| | - Theodora Filippakopoulou
- Department of Graphic Design and Visual Communication, Graphic Arts Technology Study Direction, University of West Attica, 12243 Egaleo, Greece
| | | | | | | | - Theodore Steriotis
- National Centre for Scientific Research “Demokritos”, 15341 Agia Paraskevi, Greece
| |
Collapse
|
8
|
Kralj M, Krivačić S, Ivanišević I, Zubak M, Supina A, Marciuš M, Halasz I, Kassal P. Conductive Inks Based on Melamine Intercalated Graphene Nanosheets for Inkjet Printed Flexible Electronics. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172936. [PMID: 36079974 PMCID: PMC9457697 DOI: 10.3390/nano12172936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 05/27/2023]
Abstract
With the growing number of flexible electronics applications, environmentally benign ways of mass-producing graphene electronics are sought. In this study, we present a scalable mechanochemical route for the exfoliation of graphite in a planetary ball mill with melamine to form melamine-intercalated graphene nanosheets (M-GNS). M-GNS morphology was evaluated, revealing small particles, down to 14 nm in diameter and 0.4 nm thick. The M-GNS were used as a functional material in the formulation of an inkjet-printable conductive ink, based on green solvents: water, ethanol, and ethylene glycol. The ink satisfied restrictions regarding stability and nanoparticle size; in addition, it was successfully inkjet printed on plastic sheets. Thermal and photonic post-print processing were evaluated as a means of reducing the electrical resistance of the printed features. Minimal sheet resistance values (5 kΩ/sq for 10 printed layers and 626 Ω/sq for 20 printed layers) were obtained on polyimide sheets, after thermal annealing for 1 h at 400 °C and a subsequent single intense pulsed light flash. Lastly, a proof-of-concept simple flexible printed circuit consisting of a battery-powered LED was realized. The demonstrated approach presents an environmentally friendly alternative to mass-producing graphene-based printed flexible electronics.
Collapse
Affiliation(s)
- Magdalena Kralj
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Sara Krivačić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Irena Ivanišević
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Marko Zubak
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Antonio Supina
- Institute of Physics, Bijenička cesta 46, 10000 Zagreb, Croatia
| | - Marijan Marciuš
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ivan Halasz
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Petar Kassal
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| |
Collapse
|