1
|
Wei G, Deng S, Shao D, Xu D, Lei R, Li X. Gemini cationic surfactant of 1, 3-bis (dodecyl dimethyl ammonium chloride) propane as a novel excellent inhibitor for the corrosion of cold rolled steel in HCl solution. J Colloid Interface Sci 2025; 677:324-345. [PMID: 39096702 DOI: 10.1016/j.jcis.2024.07.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Gemini surfactants have become the research focus of novel excellent inhibitors because of their special structure (two amphiphilic moieties covalently connected at head group by a spacer) and excellent surface properties. It is proved by theoretical calculations that 1, 3-bis (dodecyl dimethyl ammonium chloride) propane (BDDACP) molecules can perform electron transfer with Fe (110). And it has a small fraction free volume, thus greatly reducing the diffusion and migration degree of corrosive particles. The potentiodynamic polarization curve showed that coefficients of cathodic and anodic reaction less than 1 and polarization resistance increased to 1602.9 Ω cm-2 after added BDDACP, confirming that BDDACP significantly inhibited the corrosion reaction by occupying the active site. The electrochemical impedance spectrum of imperfect semi-circle shows that the system resistance increases and double layer capacitance after added BDDACP. Weight loss tests also confirmed that BDDACP forms protective film by occupying the active sites on steel surface, and the maximum inhibition efficiency is 92 %. Comparison of the microscopic morphology showed that steel surface roughness was significantly reduced after added BDDACP. The results of time-of-flight secondary ion mass spectrometry show that steel surface contains some elements from BDDACP, which confirms the adsorption of BDDACP on steel surface.
Collapse
Affiliation(s)
- Gaofei Wei
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Shuduan Deng
- College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Dandan Shao
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, PR China
| | - Ran Lei
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Xianghong Li
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China.
| |
Collapse
|
2
|
Ganjoo R, Sharma S, Sharma PK, Dagdag O, Berisha A, Ebenso EE, Kumar A, Verma C. Coco Monoethanolamide Surfactant as a Sustainable Corrosion Inhibitor for Mild Steel: Theoretical and Experimental Investigations. Molecules 2023; 28:1581. [PMID: 36838570 PMCID: PMC9965140 DOI: 10.3390/molecules28041581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Recent studies indicate that surfactants are a relatively new and effective class of corrosion inhibitors that almost entirely meet the criteria for a chemical to be used as an aqueous phase corrosion inhibitor. They possess the ideal hydrophilicity to hydrophobicity ratio, which is crucial for effective interfacial interactions. In this study, a coconut-based non-ionic surfactant, namely, coco monoethanolamide (CMEA), was investigated for corrosion inhibition behaviour against mild steel (MS) in 1 M HCl employing the experimental and computational techniques. The surface morphology was studied employing the scanning electron microscope (SEM), atomic force microscope (AFM), and contact measurements. The critical micelle concentration (CMC) was evaluated to be 0.556 mM and the surface tension corresponding to the CMC was 65.28 mN/m. CMEA manifests the best inhibition efficiency (η%) of 99.01% at 0.6163 mM (at 60 °C). CMEA performs as a mixed-type inhibitor and its adsorption at the MS/1 M HCl interface followed the Langmuir isotherm. The theoretical findings from density functional theory (DFT), Monte Carlo (MC), and molecular dynamics (MD) simulations accorded with the experimental findings. The MC simulation's assessment of CMEA's high adsorption energy (-185 Kcal/mol) proved that the CMEA efficiently and spontaneously adsorbs at the interface.
Collapse
Affiliation(s)
- Richika Ganjoo
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara 144402, India
| | - Shveta Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara 144402, India
| | - Praveen K. Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara 144402, India
| | - O. Dagdag
- Centre for Materials Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa
| | - Avni Berisha
- Department of Chemistry, Faculty of Natural and Mathematics Science, University of Prishtina, 10000 Prishtina, Kosovo
| | - Eno E. Ebenso
- Centre for Materials Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa
| | - Ashish Kumar
- NCE, Department of Science and Technology, Government of Bihar, Patna 803108, India
| | - Chandrabhan Verma
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
3
|
Controlling C-steel dissolution in 1 M HCl solution using newly synthesized ρ-substituted imine derivatives: Theoretical (DFT and MCs) and experimental investigations. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Shaban SM, Shafek SH, Elged AH, Bekhit M, Adawy AI, Badr EA. Suppression of steel corrosion via some gemini cationic surfactant-based Schiff base: experimental and theoretical investigations. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Steel is involved extensively in engineering vast constructing units in many industries and can undergo to corrosion by some chemical and/or electrochemical reactions with the environment. Therefore, designating an organic inhibitor with a specific chemical structure will participate in steel protection via enhancing their adsorption on the steel surface. Three gemini cationic surfactants based on azomethine with different hydrophobic tails labeled GSBI8, GSBI12, and GSBI16 have been designated and evaluated as corrosion inhibitors utilizing electrochemical impedance spectroscopy (EIS), gravimetrical and potentiodynamic polarization techniques. Importantly, the surfactant tail regulated the corrosion inhibition performance; with increasing the surfactant tail length, their inhibition efficiency enhanced because of their higher adsorption affinity. The inhibition efficiency of GSBI8, GSBI12, and GSBI16 reached 95.52, 96.72, and 97.1% respectively (EIS measurements). The Tafel examination clarified that GSBI8, GSBI12, and GSBI16 inhibitors behave as mixed type inhibitors following the modified Langmuir isotherm. The inhibitors adsorption on C-steel was confirmed by SEM surface examination. Finally, the DFT and MCs point of views investigation supported the experimental performance of the tested GSBI8, GSBI12, and GSBI16 inhibitors and specially their dependence on surfactant tail length.
Collapse
Affiliation(s)
- Samy M. Shaban
- Surfactant Laboratory, Petrochemical Department , Egyptian Petroleum Research Institute , Cairo , Egypt
- School of Chemical Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Samir H. Shafek
- Surfactant Laboratory, Petrochemical Department , Egyptian Petroleum Research Institute , Cairo , Egypt
| | - Ahmed H. Elged
- Surfactant Laboratory, Petrochemical Department , Egyptian Petroleum Research Institute , Cairo , Egypt
| | - Mahmoud Bekhit
- Surfactant Laboratory, Petrochemical Department , Egyptian Petroleum Research Institute , Cairo , Egypt
| | - Ahmed I. Adawy
- Surfactant Laboratory, Petrochemical Department , Egyptian Petroleum Research Institute , Cairo , Egypt
| | - Emad A. Badr
- Surfactant Laboratory, Petrochemical Department , Egyptian Petroleum Research Institute , Cairo , Egypt
| |
Collapse
|
5
|
Di Y, Li X, Chen Z, Yin X, Chen Y, Liu Y, Yang W. Experimental and theoretical insights into two fluorine-containing imidazoline Schiff base inhibitors for carbon steels in hydrochloric acid solution. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Abd-ElHamid A, I. A. El-Dougdog W, Syam S, Aiad I, Shaban SM, Kim DH. Synthesis of gemini cationic surfactants-based pyridine Schiff base for steel corrosion and sulfate reducing bacteria mitigation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Ghaderi M, SaadatAbadi AR, Mahdavian M, Haddadi SA. pH-Sensitive Polydopamine-La (III) Complex Decorated on Carbon Nanofiber toward On-Demand Release Functioning of Epoxy Anti-Corrosion Coating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11707-11723. [PMID: 36098635 DOI: 10.1021/acs.langmuir.2c01801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The high aspect ratio and unique thermal and electrical characteristics of carbon nanofiber (CNF) made it an ideal physical barrier against the penetration of corrosive ions. However, the poor compatibility of the CNF with the polymer matrix and the lack of active corrosion inhibitors are the key limitations of this nanomaterial, resulting in short-term anti-corrosion resistance. An intelligent self-healing epoxy (EP) coating, including CNF modified with a polydopamine (PDA)-La3+ complex, was successfully fabricated to overcome these issues. Electrochemical impedance spectroscopy (EIS) evaluation implied that mild steel (MS) submerged in a 3.5 wt % NaCl solution containing the CNF-PDA-La extract had a total corrosion resistance (RT) of 3107 Ω cm2 after 24 h, which is much greater than the MS immersed in the blank solution (1378 Ω cm2). Furthermore, the potentiodynamic polarization analysis indicated a 50% reduction in the corrosion rate (CR) of the MS soaked in the solution containing released PDA and La3+ inhibitors compared to the blank solution. EIS and salt spray analysis were used to assess the self-healing capabilities of epoxy coatings incorporating modified CNFs. EIS assessment of scratched coatings revealed a 117% improvement in RT of the CNF-PDA-La/EP coating compared to the Blank/EP after 10 h of immersion in the saline solution. This enhancement is due to the intelligent release of PDA and La3+ inhibitors at the scratch sites, which can mitigate MS corrosion by forming a PDA-Fe complex and the deposition of La(OH)3 on the MS surface. The salt spray test results also exhibited the CNF-PDA-La/EP coating's superior anti-corrosion capabilities after 20 days. Hence, this research presents a logical approach for developing anti-corrosion coatings with improved nanofiller compatibility and self-healing characteristics.
Collapse
Affiliation(s)
- Mohammad Ghaderi
- Department of Chemical & Petroleum Engineering, Sharif University of Technology, Tehran 111559465, Iran
| | | | - Mohammad Mahdavian
- Surface Coating and Corrosion Department, Institute for Color Science and Technology, Tehran 1668836471, Iran
| | - Seyyed Arash Haddadi
- Department of Chemical & Petroleum Engineering, Sharif University of Technology, Tehran 111559465, Iran
| |
Collapse
|