1
|
Zeng B, Xu L, Wang G, Shi R, Wang K, Wang S, Li C. Distinctive small molecules blend: Promotes lacrimal gland epithelial cell proliferation in vitro and accelerates lacrimal gland injury repair in vivo. Ocul Surf 2024; 34:283-295. [PMID: 39209152 DOI: 10.1016/j.jtos.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE This study aims to develop a novel serum-free culture strategy containing only two small molecules, Y27632 and SB431542 (2C), for in vitro expansion of mouse lacrimal gland epithelial cells (LGECs) and investigate an innovative therapeutic approach for lacrimal gland (LG) injury. METHODS LGECs proliferative capacity was assessed by cell counting, crystal violet staining, qRT-PCR and immunofluorescence. Cell differentiation was achieved by manipulating culture conditions and assessed by qRT-PCR and AQP5 immunofluorescence. LGECs were seeded in Matrigel for three-dimensional culture and assessed by qRT-PCR and immunofluorescence. Secretory function of the cultures was assayed by ELISA. In vivo, 2C injection verified its reparative capacity in a mouse LG injury model. Corneal fluorescein staining, phenol red cotton thread, H&E, immunofluorescence and Western blot were used to assess LG injury repair. RESULTS LGECs cultured with 2C exhibited high expression of stemness/proliferation markers and maintained morphology and proliferative capacity even after the tenth passage. Removal of 2C was efficacious in achieving LGECs differentiation, characterized by the increased AQP5 expression and LTF secretion. 3D spheroids cultured with 2C demonstrated differentiation potential, forming microglandular structures containing multiple LG cell types with secretory functions after 2C removal. In vivo, 2C improved the structural integrity and function of the injured LG. CONCLUSIONS We present a small molecule combination, 2C, that promotes LGECs expansion and differentiation in vitro and accelerates LG injury repair in vivo. This approach has potential applications for providing a stable source of seed cells for tissue engineering applications, providing new sights for LG-related diseases treatment.
Collapse
Affiliation(s)
- Baihui Zeng
- Department of Ophthalmology·Optometry Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130012, China
| | - Lina Xu
- Department of Ophthalmology·Optometry Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130012, China; Eye Institute & Affiliated Xiamen Eye Center &The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Guoliang Wang
- Department of Ophthalmology·Optometry Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130012, China; Eye Institute & Affiliated Xiamen Eye Center &The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ruize Shi
- Department of Ophthalmology·Optometry Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130012, China
| | - Kerui Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shurong Wang
- Department of Ophthalmology·Optometry Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130012, China.
| | - Cheng Li
- Huaxia Eye Hospital of Quanzhou, Quanzhou, Fujian, 362000, China; Eye Institute & Affiliated Xiamen Eye Center &The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, 361102, China; Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, Fujian, 361102, China.
| |
Collapse
|
2
|
Murashima ADAB, Sant’Ana AMS, Faustino-Barros JF, Machado Filho EB, da Silva LCM, Fantucci MZ, Módulo CM, Chahud F, Garcia DM, Rocha EM. Exorbital Lacrimal Gland Ablation and Regrafting Induce Inflammation but Not Regeneration or Dry Eye. Int J Mol Sci 2024; 25:8318. [PMID: 39125889 PMCID: PMC11312169 DOI: 10.3390/ijms25158318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The study evaluated the regenerative responses of the lacrimal functional unit (LFU) after lacrimal gland (LG) ablation. The LG of Wistar rats was submitted to G1) partial LG ablation, G2) partial ablation and transplantation of an allogeneic LG, or G3) total LG ablation, (n = 7-10/group). The eye wipe test, slit lamp image, tear flow, and histology were evaluated. RT-PCR analyzed inflammatory and proliferation mediators. The findings were compared to naïve controls after 1 and 2 months (M1 and M2). G3 presented increased corneal sensitivity, and the 3 groups showed corneal neovascularization. Histology revealed changes in the LG and corneal inflammation. In the LG, there was an increase in MMP-9 mRNA of G1 and G2 at M1 and M2, in RUNX-1 at M1 and M2 in G1, in RUNX-3 mRNA at M1 in G1, and at M2 in G2. TNF-α mRNA rose in the corneas of G1 and G2 at M2. There was an increase in the IL-1β mRNA in the trigeminal ganglion of G1 at M1. Without changes in tear flow or evidence of LG regeneration, LG ablation and grafting are unreliable models for dry eye or LG repair in rats. The surgical manipulation extended inflammation to the LFU.
Collapse
Affiliation(s)
- Adriana de Andrade Batista Murashima
- Department of Ophthalmology, Otorhinolaryngology and Head & Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Ariane M. S. Sant’Ana
- Department of Ophthalmology, Otorhinolaryngology and Head & Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Jacqueline Ferreira Faustino-Barros
- Department of Ophthalmology, Otorhinolaryngology and Head & Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Elísio B. Machado Filho
- Department of Ophthalmology, Otorhinolaryngology and Head & Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Lilian Costa Mendes da Silva
- Department of Ophthalmology, Otorhinolaryngology and Head & Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Marina Zilio Fantucci
- Department of Ophthalmology, Otorhinolaryngology and Head & Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Carolina Maria Módulo
- Department of Ophthalmology, Otorhinolaryngology and Head & Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Fernando Chahud
- Department of Pathology and Legal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Denny Marcos Garcia
- Department of Ophthalmology, Otorhinolaryngology and Head & Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Eduardo M. Rocha
- Department of Ophthalmology, Otorhinolaryngology and Head & Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| |
Collapse
|
3
|
Chen J, Bai T, Su J, Cong X, Lv L, Tong L, Yu H, Feng Y, Yu G. Salivary Gland Transplantation as a Promising Approach for Tear Film Restoration in Severe Dry Eye Disease. J Clin Med 2024; 13:521. [PMID: 38256655 PMCID: PMC10816601 DOI: 10.3390/jcm13020521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
With increased awareness of dry eye disease (DED), a multitude of therapeutic options have become available. Nevertheless, the treatment of severe DED remains difficult. In a patient whose DED is related to the loss of lacrimal function without severe destruction of the salivary glands, autologous transplantation of the latter as functioning exocrine tissue to rebuild a stable tear film is an attractive idea. All three major and minor salivary glands have been used for such transplantation. Due to the complications associated with and unfavorable prognosis of parotid duct and sublingual gland transplantation, surgeons now prefer to use the submandibular gland (SMG) for such procedures. The transplantation of the SMG not only has a high survival rate, but also improves dry eye symptoms and signs for more than 20 years post-surgery. The regulation of the secretion of the transplanted SMG is critical because the denervated SMG changes its mechanism of secretion. Innovative procedures have been developed to stimulate secretion in order to prevent the obstruction of the Wharton's duct and to decrease secretion when postoperative "epiphora" occurs. Among the minor salivary glands, the transplantation of the labial salivary glands is the most successful in the long-term. The measurement of the flow rates of minor salivary glands and donor-site selection are critical steps before surgery.
Collapse
Affiliation(s)
- Jiayi Chen
- Beijing Key Laboratory of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China (H.Y.)
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Tianyi Bai
- Beijing Key Laboratory of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China (H.Y.)
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Jiazeng Su
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xin Cong
- Key Laboratory of Molecular Cardiovascular Sciences, Beijing Key Laboratory of Cardiovascular Receptors Research, Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Ministry of Education, Beijing 100191, China;
| | - Lan Lv
- Department of Ophthalmology, Beijing Tong Ren Hospital, Capital University of Medical Science, Beijing 100730, China
| | - Louis Tong
- Cornea and External Eye Disease Service, Singapore National Eye Center, Singapore 168751, Singapore;
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Eye-Academic Clinical Program, Duke-National University of Singapore, Singapore 169857, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Haozhe Yu
- Beijing Key Laboratory of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China (H.Y.)
| | - Yun Feng
- Beijing Key Laboratory of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China (H.Y.)
| | - Guangyan Yu
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
4
|
Møller-Hansen M. Mesenchymal stem cell therapy in aqueous deficient dry eye disease. Acta Ophthalmol 2023; 101 Suppl 277:3-27. [PMID: 37840443 DOI: 10.1111/aos.15739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
ENGLISH SUMMARY Dry eye disease (DED) is characterized by ocular dryness, irritation and blurred vision and has a significant impact on the patient's quality of life. This condition can be particularly severe in patients with aqueous deficient dry eye disease (ADDE) due to Sjögren's syndrome (SS), an autoimmune disease that affects the lacrimal and salivary glands. Current treatments for ADDE are often limited to symptomatic relief. A literature review was conducted to explore the current surgical interventions used or tested in humans with ADDE (I). These interventions include procedures involving the eyelids and tear ducts, transplantation of amniotic membrane or salivary glands, injections around the tear ducts and cell-based injections into the lacrimal gland (LG). Each treatment has its advantages and disadvantages; however, treating dry eyes in patients with SS presents a particular challenge due to the systemic nature of the disease. Moreover, there is a need for new therapeutic options. Mesenchymal stem cells (MSCs) are a type of stem cell that have shown promise in regenerating damaged tissue and reducing inflammation in various diseases. Previous studies in animal models have suggested that MSCs could be effective in treating ADDE. Thus, this thesis aims to investigate the safety and efficacy of injecting MSCs into the LG as a treatment option for patients with ADDE secondary to SS. The study also aims to see this treatment in light of existing and novel investigational treatment options. The clinical studies conducted for this thesis are the first of their kind in humans. MSCs derived from healthy donors' adipose tissue (ASCs) were cultured in a laboratory, frozen and thawed ready for use. In the safety study, we performed the first human trial involving the administration of a single injection of ASCs into the LG of one eye in seven patients suffering from severe ADDE (II). The primary objective was to test the safety of this treatment, while the secondary objective was to assess improvements in subjective and objective signs of dry eye. The results of the trial showed no serious side effects within 4 months of follow-up after treatment. On average, there was a 40% reduction in dry eye symptoms assessed with the Ocular Surface Disease Index (OSDI) questionnaire. Additionally, in the treated eye, there was a significant decrease in tear osmolarity, an increase in tear film stability and an increase in tear production. To further investigate the efficacy of this treatment, our research group performed a clinical, randomized study aiming to compare the ASC injection into the LG with the injection of a vehicle (the excipient in which the ASCs are dissolved) and observation (no intervention) (III). The study involved 20 subjects receiving ASC injection, 20 subjects receiving vehicle injection and 14 patients being observed without intervention. The subjects were examined to assess the outcomes with a 12-month follow-up after treatment. Both intervention groups showed a significant reduction in subjective dry eye symptoms of approximately 40%. This improvement was evident at the 1-week follow-up and persisted until the 12-month follow-up. The observation group did not experience any change in OSDI score. The ASCs group exhibited a significant mean increase in non-invasive tear break-up time (NIKBUT) of 6.48 s (149%) at the four-week follow-up, which was significantly higher than that in the vehicle group (p = 0.04). Moreover, the ASCs group showed a significant increase in NIKBUT compared to that in the observation group at the 12-month follow-up (p = 0.004). In both the ASCs and vehicle group, a significant increase in Schirmer test scores at the 4-month follow-up and the 12-month follow-up was observed. In conclusion, this thesis contributes valuable findings with a new treatment option for patients with dry eye disease. Injection of ASCs into the LG was shown to be safe and to improve subjective dry eye symptoms and specifically the tear film stability in patients with ADDE due to SS. Compared to other treatment modalities of ADDE, this treatment has greater potential, as ASCs could potentially be used as an anti-inflammatory therapeutic option for managing DED of other causes as well. RESUMÉ (DANISH SUMMARY): Tørre øjne, karakteriseret ved tørhedsfornemmelse og irritation af øjnene samt sløret syn, har en betydelig indvirkning på patientens livskvalitet. Denne tilstand kan vaere saerligt alvorlig hos patienter med nedsat tåreproduktion (ADDE) som følge af Sjögrens syndrom (SS), en autoimmun sygdom, der påvirker tårekirtlerne og spytkirtlerne. Nuvaerende behandlinger for ADDE er ofte begraenset til symptomlindring. Vi gennemførte en litteraturgennemgang for at undersøge, hvilke nuvaerende kirurgiske behandlingsmetoder, der anvendes eller testes hos patienter med ADDE (I). Disse interventioner inkluderer procedurer, der involverer øjenlåg og tårekanaler, transplantation af amnionhinde eller spytkirtler, injektioner omkring tårekanalerne samt cellebaserede injektioner i tårekirtlen. Hver behandling har sine fordele og ulemper, men behandling af tørre øjne hos patienter med SS udgør en saerlig udfordring på grund af sygdommens systemiske udbredning, og der er behov for nye behandlingsmuligheder. Mesenkymale stamceller (MSCs) er en type stamcelle, der har vist lovende resultater med hensyn til at regenerere beskadiget vaev og reducere inflammation i forskellige sygdomme. Tidligere undersøgelser i dyremodeller har indikeret, at MSCs kan vaere en effektiv behandling af ADDE. Denne afhandling har til formål at undersøge sikkerheden og effekten af injektion af MSCs i tårekirtlen som en mulig behandling til patienter med ADDE som følge af SS. Afhandlingen sigter også mod at sammenligne denne behandling med andre eksisterende, kirurgiske behandlingsmuligheder af ADDE. Som led i dette projekt udførte vi de første kliniske forsøg af sin art i mennesker. MSCs fra raske donorers fedtvaev (ASCs) blev dyrket i et laboratorium, frosset ned og er optøet klar til brug. Det første mål var at teste sikkerheden ved denne behandling og sekundaert at undersøge behandlingens effekt. For at undersøge dette modtog syv forsøgspersoner med svaer ADDE én injektion med ASCs i tårekirtlen på det ene øje (II). Resultaterne af forsøget viste ingen alvorlige bivirkninger inden for fire måneders opfølgning efter behandlingen. I gennemsnit fandt vi yderligere en 40% reduktion i symptomer på tørre øjne vurderet med et spørgeskema, og en markant stigning i tåreproduktionen og af tårefilmens stabilitet i det behandlede øje. For yderligere at undersøge effekten af denne behandling udførte vi et klinisk, randomiseret forsøg med det formål at sammenligne injektion af ASCs i tårekirtlen med injektion af en kontrolopløsning (vaesken, hvor stamcellerne var opløst) og observation (ingen intervention) (III). Studiet omfattede 20 forsøgspersoner, der modtog ASC-injektion, 20 forsøgspersoner, der modtog injektion af kontrolopløsningen, og 14 forsøgspersoner i observationsgruppen. Forsøgspersonerne blev undersøgt med en opfølgningstid på 12 måneder efter behandling. Begge interventionsgrupper viste en betydelig reduktion på ca. 40% i subjektive symptomer på tørre øjne. Denne forbedring var betydelig allerede ved opfølgning efter en uge og varede ved 12 måneder efter behandling. Observationsgruppen oplevede ingen betydelig aendring i symptomer. ASCs gruppen viste desuden en signifikant stigning i tårefilmsstabiliteten (NIKBUT) på 6,48 sekunder (149%) ved opfølgning efter fire uger, hvilket var markant højere end efter injektion af kontrolopløsning (p = 0,04). Desuden viste ASCs gruppen en betydelig stigning i NIKBUT sammenlignet med observationsgruppen ved opfølgning efter 12 måneder (p = 0,004). Både injektion af ASCs og kontrolopløsning medførte en betydelig stigning i tåreproduktionen ved opfølgning fire måneder og 12 måneder efter behandling. Denne afhandling bidrager med vigtige resultater inden for en ny behandlingsmulighed af tørre øjne. Injektion af ASCs i tårekirtlen viste sig at vaere sikker, forbedrede subjektive symptomer på tørre øjne og øgede saerligt tårfilmens stabilitet hos patienter med ADDE på grund af SS. Sammenlignet med andre behandlingsmuligheder for ADDE har denne behandling vist et stort potentiale. ASCs kan muligvis også bruges som en anti-inflammatorisk behandling af tørre øjne af andre årsager i fremtiden.
Collapse
Affiliation(s)
- Michael Møller-Hansen
- Department of Ophthalmology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Wood JPM, Chidlow G, Halliday LA, Casson RJ, Selva D, Sun M. Histochemical Comparison of Human and Rat Lacrimal Glands: Implications for Bio-Engineering Studies. Transl Vis Sci Technol 2022; 11:10. [PMID: 36374486 PMCID: PMC9669807 DOI: 10.1167/tvst.11.11.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Purpose The purpose of this study was to determine whether rodent lacrimal glands (LGs) represent a suitable surrogate for human tissue in bio-engineering research, we undertook a meticulous histological and histochemical comparison of these two tissues. Methods Histological techniques and immunohistochemistry were used to compare the structure of adult human and rat LG tissues and the expression of key functional tissue elements. Results Compared with humans, the rat LG is comprised of much more densely packed acini which are devoid of an obvious central lumen. Myoepithelial, fibroblasts, dendritic cells, T cells, and putative progenitor cells are present in both tissues. However, human LG is replete with epithelium expressing cytokeratins 8 and 18, whereas rat LG epithelium does not express cytokeratin 8. Furthermore, human LG expresses aquaporins (AQPs) 1, 3, and 5, whereas rat LG expresses AQPs 1, 4, and 5. Additionally, mast cells were identified in the rat but not the human LGs and large numbers of plasma cells were detected in the human LGs but only limited numbers were present in the rat LGs. Conclusions The cellular composition of the human and rat LGs is similar, although there is a marked difference in the actual histo-architectural arrangement of the tissue. Further variances in the epithelial cytokeratin profile, in tissue expression of AQPs and in mast cell and plasma cell infiltration, may prove significant. Translational Relevance The rat LG can serve as a useful surrogate for the human equivalent, but there exist specific tissue differences meaning that caution must be observed when translating results to patients.
Collapse
Affiliation(s)
- John P. M. Wood
- Discipline of Ophthalmology & Visual Sciences, University of Adelaide, Adelaide South Australia, Australia
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, South Australia, Australia
| | - Glyn Chidlow
- Discipline of Ophthalmology & Visual Sciences, University of Adelaide, Adelaide South Australia, Australia
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, South Australia, Australia
| | - Luke A. Halliday
- Discipline of Ophthalmology & Visual Sciences, University of Adelaide, Adelaide South Australia, Australia
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, South Australia, Australia
| | - Robert J. Casson
- Discipline of Ophthalmology & Visual Sciences, University of Adelaide, Adelaide South Australia, Australia
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, South Australia, Australia
| | - Dinesh Selva
- Discipline of Ophthalmology & Visual Sciences, University of Adelaide, Adelaide South Australia, Australia
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, South Australia, Australia
| | - Michelle Sun
- Discipline of Ophthalmology & Visual Sciences, University of Adelaide, Adelaide South Australia, Australia
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, South Australia, Australia
| |
Collapse
|
6
|
Veernala I, Jaffet J, Fried J, Mertsch S, Schrader S, Basu S, Vemuganti G, Singh V. Lacrimal gland regeneration: The unmet challenges and promise for dry eye therapy. Ocul Surf 2022; 25:129-141. [PMID: 35753665 DOI: 10.1016/j.jtos.2022.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
DED (Dry eye disease) is a common multifactorial disease of the ocular surface and the tear film. DED has gained attention globally, with millions of people affected.. Although treatment strategies for DED have shifted towards Tear Film Oriented Therapy (TFOT), all the existing strategies fall under standard palliative care when addressed as a long-term goal. Therefore, different approaches have been explored by various groups to uncover alternative treatment strategies that can contribute to a full regeneration of the damaged lacrimal gland. For this, multiple groups have investigated the role of lacrimal gland (LG) cells in DED based on their regenerating, homing, and differentiating capabilities. In this review, we discuss in detail therapeutic mechanisms and regenerative strategies that can potentially be applied for lacrimal gland regeneration as well as their therapeutic applications. This review mainly focuses on Aqueous Deficiency Dry Eye Disease (ADDE) caused by lacrimal gland dysfunction and possible future treatment strategies. The current key findings from cell and tissue-based regenerative therapy modalities that could be utilised to achieve lacrimal gland tissue regeneration are summarized. In addition, this review summarises the available literature from in vitro to in vivo animal studies, their limitations in relation to lacrimal gland regeneration and the possible clinical applications. Finally, current issues and unmet needs of cell-based therapies in providing complete lacrimal gland tissue regeneration are discussed.
Collapse
Affiliation(s)
- Induvahi Veernala
- School of Medical Sciences, University of Hyderabad, Prof C R Rao Road, Gachibowli, Hyderabad, 500046, India
| | - Jilu Jaffet
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, LV Prasad Eye Institute, Kallam Anji Reddy Campus, L V Prasad Marg, Hyderabad, 500 034, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Jasmin Fried
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Sonja Mertsch
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Stefan Schrader
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Sayan Basu
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, LV Prasad Eye Institute, Kallam Anji Reddy Campus, L V Prasad Marg, Hyderabad, 500 034, India
| | - Geeta Vemuganti
- School of Medical Sciences, University of Hyderabad, Prof C R Rao Road, Gachibowli, Hyderabad, 500046, India.
| | - Vivek Singh
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, LV Prasad Eye Institute, Kallam Anji Reddy Campus, L V Prasad Marg, Hyderabad, 500 034, India.
| |
Collapse
|
7
|
Kasal K, Güven S, Utine CA. Current methodology and cell sources for lacrimal gland tissue engineering. Exp Eye Res 2022; 221:109138. [DOI: 10.1016/j.exer.2022.109138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/14/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
|
8
|
Xiao S, Zhang Y. Establishment of long-term serum-free culture for lacrimal gland stem cells aiming at lacrimal gland repair. Stem Cell Res Ther 2020; 11:20. [PMID: 31915062 PMCID: PMC6951017 DOI: 10.1186/s13287-019-1541-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/21/2019] [Accepted: 12/23/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Aqueous-deficient dry eye disease (ADDED) resulting from dysfunction of the lacrimal gland (LG) is currently incurable. Although LG stem/progenitor cell-based therapy is considered to be a promising strategy for ADDED patients, the lack of a reliable serum-free culture method to obtain enough lacrimal gland stem cells (LGSCs) and the basic standard of LGSC transplantation are obstacles for further research. METHODS Adult mouse LGSCs were cultured in Matrigel-based 3D culture under serum-free culture condition, which contained EGF, FGF10, Wnt3A, and Y-27632. LGSCs were continuously passaged over 40 times every 7 days, and the morphology and cell numbers were recorded. LGSCs were induced to differentiate to ductal cells by reducing Matrigel rigidity, while fetal bovine serum was used for the induction of acinar cells. RT-PCR or qRT-PCR analysis, RNA-sequence analysis, H&E staining, and immunofluorescence were used for characterization and examining the differentiation of LGSCs. LGSCs were allotransplanted into diseased LGs to examine the ability of repairing the damage. The condition of eye orbits was recorded using a camera, the tear production was measured using phenol red-impregnated cotton threads, and the engraftments of LGSCs were examined by immunohistochemistry. RESULTS We established an efficient 3D serum-free culture for adult mouse LGSCs, in which LGSCs could be continuously passaged for long-term expansion. LGSCs cultured from both the healthy and ADDED mouse LGs expressed stem/progenitor cell markers Krt14, Krt5, P63, and nestin, had the potential to differentiate into acinar or ductal-like cells in vitro and could engraft into diseased LGs and relieve symptoms of ADDED after orthotopic injection of LGSCs. CONCLUSION We successfully established an efficient serum-free culture for adult mouse LGSCs aiming at LG repair for the first time. Our approach provides an excellent theoretical and technical reference for future clinical research for ADDED stem cell therapy.
Collapse
Affiliation(s)
- Sa Xiao
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Yan Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
9
|
Kawakita T. Regeneration of Lacrimal Gland Function to Maintain the Health of the Ocular Surface. Invest Ophthalmol Vis Sci 2019; 59:DES169-DES173. [PMID: 30481823 DOI: 10.1167/iovs.17-23576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Dry eye is a multifactorial disease that is one of the most common diseases worldwide. A major cause of dry eye is the deficiency of aqueous tears, which are mainly secreted from the lacrimal gland. The lacrimal gland plays an important role in maintaining the health of the ocular surface and protecting it from environmental exposure. Dry eye can lead to ocular irritation and discomfort, as well as severe ocular surface diseases (e.g., ocular infections, corneal ulcerations, and ocular surface keratinization). These severe diseases can be induced by an atrophied or injured lacrimal gland; current therapies cannot completely restore the function of lacrimal gland. To develop more definitive therapies, it is important to understand lacrimal gland biology at the molecular level, as well as inflammatory processes affecting the function of the gland. During severe inflammation, the tissue structure of the lacrimal gland is destroyed; it is replaced by scar formation during wound healing, which leads to lacrimal gland dysfunction. Using an animal model of lacrimal gland dysfunction, many investigators have studied molecular mechanisms of inflammation in the lacrimal gland. To restore lacrimal gland function, the lacrimal acini must be restored in their niche. Notably, organ transplantation therapies have been reported to restore lacrimal gland function, directly or indirectly, in animal models. In this review, we describe the current understanding of the lacrimal gland as the therapeutic target for dry eye diseases, as well as recent advances in the field of lacrimal gland cell-based therapy to treat severe dry eye diseases.
Collapse
Affiliation(s)
- Tetsuya Kawakita
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| |
Collapse
|
10
|
Hirayama M. Advances in Functional Restoration of the Lacrimal Glands. Invest Ophthalmol Vis Sci 2018; 59:DES174-DES182. [PMID: 30481824 DOI: 10.1167/iovs.17-23528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The lacrimal glands produce tears to support a healthy homeostatic environment on the ocular surface. The lacrimal gland dysfunction characteristic of dry eye disease causes ocular discomfort and visual disturbances and in severe cases can result in a loss of vision. The demand for adequate restoration of lacrimal gland function has been intensified due to advances in stem cell biology, developmental biology, and bioengineering technologies. In addition to conventional therapies, including artificial tears, tear alternatives (such as autologous serum eye drops) and salivary gland transplantation, a regenerative medicine approach has been identified as a novel strategy to restore the function of the lacrimal gland. Recent studies have demonstrated the potential of progenitor cell injection therapy to repair the tissue of the lacrimal glands. A current three-dimensional (3D) tissue engineering technique has been shown to regenerate a secretory gland structure by reproducing reciprocal epithelial-mesenchymal interactions during ontogenesis in vitro and in vivo. A novel direct reprogramming method has suggested a possibility to induce markers in the lacrimal gland developmental process from human pluripotent stem cells. The development of this method is supported by advances in our understanding of gene expression and regulatory networks involved in the development and differentiation of the lacrimal glands. Engineering science has proposed a medical device to stimulate tearing and a bio-hybrid scaffold to reconstruct the 3D lacrimal gland structure. In this review, we will summarize recent bioengineering advances in lacrimal gland regeneration toward the functional restoration of the lacrimal glands as a future dry eye therapy.
Collapse
Affiliation(s)
- Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States
| |
Collapse
|
11
|
Abstract
PURPOSE To review the recent data about orbital development and sort out the controversies from the very early stages during embryonic life till final maturation of the orbit late in fetal life, and to appreciate the morphogenesis of all the definitive structures in the orbit in a methodical and timely fashion. METHODS The authors extensively review major studies detailing every aspect of human embryologic and fetal orbital morphogenesis including the development of extraocular muscles, orbital fat, vessels, nerves, and the supportive connective tissue framework as well as bone. These interdisciplinary studies span almost a century and a half, and include some significant controversial opposing points of view which the authors hopefully sort out. The authors also highlight a few of the most noteworthy molecular biologic studies regarding the multiple and interacting signaling pathways involved in regulating normal orbital morphogenesis. RESULTS Orbital morphogenesis involves a successive series of subtle yet tightly regulated morphogenetic events that could only be explained through the chronological narrative used by the authors. The processes that trigger and contribute to the formation of the orbits are complex and seem to be intricately regulated by multifaceted interactions and bidirectional cross-talk between a multitude of cellular building raw materials including the developing optic vesicles, neuroectoderm, cranial neural crest cells and mesoderm. CONCLUSIONS Development of the orbit is a collective enterprise necessitating interactions between, as well as contributions from different cell populations both within and beyond the realm of the orbit. A basic understanding of the processes underlying orbital ontogenesis is a crucial first step toward establishing a genetic basis or an embryologic link with orbital disease.
Collapse
|
12
|
A Ligation of the Lacrimal Excretory Duct in Mouse Induces Lacrimal Gland Inflammation with Proliferative Cells. Stem Cells Int 2017; 2017:4923426. [PMID: 28874911 PMCID: PMC5569877 DOI: 10.1155/2017/4923426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/12/2017] [Accepted: 05/21/2017] [Indexed: 01/02/2023] Open
Abstract
The lacrimal gland secretes tear fluids to ocular surface, which plays an indispensable role in maintaining the health of the ocular epithelia and protecting the ocular surface from the external environment. The dysfunction of the lacrimal glands causes dry eye disease due to a reduction in tear volume. The dry eye disease is becoming a popular public disease, for the number of patients is increasing, who have subjective symptom and loss of vision, which affect the quality of life. Inflammatory change in the damaged lacrimal gland has been reported; however, a major challenge is to establish a simple animal model to observe the changes. Here, we demonstrated an injury model by ligating the main excretory duct of the lacrimal gland, which is a simple and stable way to clearly understand the mechanism of lacrimal gland inflammation. We observed the process of injury and proliferation of the lacrimal gland and detected a population of lacrimal gland epithelial cells with proliferation potential which were also nestin-positive cells following duct ligation. This study successfully established an injury model to observe the tissue injury process of the lacrimal gland, and this model will be useful for analysis of the inflammation and proliferation mechanism in the future.
Collapse
|
13
|
Dvoriantchikova G, Tao W, Pappas S, Gaidosh G, Tse DT, Ivanov D, Pelaez D. Molecular Profiling of the Developing Lacrimal Gland Reveals Putative Role of Notch Signaling in Branching Morphogenesis. Invest Ophthalmol Vis Sci 2017; 58:1098-1109. [PMID: 28192800 PMCID: PMC5308770 DOI: 10.1167/iovs.16-20315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose Although normal function of the lacrimal gland is essential for vision (and thus for human well-being), the lacrimal gland remains rather poorly understood at a molecular level. The purpose of this study was to identify new genes and signaling cascades involved in lacrimal gland development. Methods To identify these genes, we used microarray analysis to compare the gene expression profiles of developing (embryonic) and adult lacrimal glands. Differential data were validated by quantitative RT-PCR, and several corresponding proteins were confirmed by immunohistochemistry and Western blot analysis. To evaluate the role of NOTCH signaling in lacrimal gland (LG) development, we used the NOTCH inhibitor DAPT and conditional Notch1 knockouts. Results Our microarray data and an in silico reconstruction of cellular networks revealed significant changes in the expression patterns of genes from the NOTCH, WNT, TGFβ, and Hedgehog pathways, all of which are involved in the regulation of epithelial-to-mesenchymal transition (EMT). Our study also revealed new putative lacrimal gland stem cell/progenitor markers. We found that inhibiting Notch signaling both increases the average number of lacrimal gland lobules and reduces the size of each lobule. Conclusions Our findings suggest that NOTCH-, WNT-, TGFβ-, and Hedgehog-regulated EMT transition are critical mechanisms in lacrimal gland development and morphogenesis. Our data also supports the hypothesis that NOTCH signaling regulates branching morphogenesis in the developing lacrimal gland by suppressing cleft formation.
Collapse
Affiliation(s)
- Galina Dvoriantchikova
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Wensi Tao
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Steve Pappas
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Gabriel Gaidosh
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - David T Tse
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Dmitry Ivanov
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, United States 2Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Daniel Pelaez
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, United States 3Department of Biomedical Engineering, University of Miami Miller School of Medicine, Coral Gables, Florida, United States
| |
Collapse
|
14
|
Abstract
Autoimmune dacryoadenitis, such as Sjögren syndrome, comprises multifactorial and complex diseases. Inflammation of the lacrimal gland plays a key role in the pathogenesis of diseases. Unfortunately, current treatment strategies, including artificial tears, anti-inflammatory drugs, punctual occlusion, and immunosuppressive drugs, are only palliative, and long-term administration of these strategies is associated with adverse effects that limit their utility. Hence, an effective and safe treatment for autoimmune dacryoadenitis is urgently needed. Mesenchymal stem cells (MSCs) have emerged as a promising tool for treating autoimmune dacryoadenitis, owing to their immunosuppressive properties, tissue repair functions, and powerful differentiation capabilities. A large number of studies have focused on the effect of MSCs on autoimmune diseases, such as autoimmune uveitis, inflammatory bowel disease, and collagen-induced arthritis, but few studies have, to date, unequivocally established the efficacy of MSCs for treating autoimmune dacryoadenitis. In this review, we discuss recent advances in MSC treatment for autoimmune dacryoadenitis.
Collapse
Affiliation(s)
- Xiaoxiao Lu
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and Ophthalmology, No.251 Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China
| | - Xilian Wang
- Tianjin Beichen Hospital, No. 7, Beiyi Road, Beichen District, Tianjin, 300400, China
| | - Hong Nian
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and Ophthalmology, No.251 Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China
| | - Dan Yang
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and Ophthalmology, No.251 Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China
| | - Ruihua Wei
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and Ophthalmology, No.251 Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
15
|
Liu CY, Hirayama M, Ali M, Shah D, Aakalu VK. Strategies for Regenerating the Lacrimal Gland. CURRENT OPHTHALMOLOGY REPORTS 2017; 5:193-198. [PMID: 29098122 DOI: 10.1007/s40135-017-0142-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Purpose of review Aqueous deficient dry eye disease, a significant cause of morbidity worldwide, is due to dysfunction of the main and accessory lacrimal glands. Recent advances in efforts to regenerate lacrimal gland are reviewed. Recent findings Several strategies are being explored: ex vivo culture models of human and non-human lacrimal gland epithelial and myoepithelial cells, isolation and characterization of adult precursor cells within lacrimal glands, directed differentiation of stem cells to lacrimal gland cells, and organogenesis and engraftment techniques. Summary Conditions for primary cell culture and expansion are being established and will help in the characterization of lacrimal cells. Presumed adult precursor cells have been isolated, laying down foundations for regeneration. Stem cells have been induced to express features of lacrimal gland cells. Engraftment of ex vivo cultured lacrimal tissue is proof of concept that lacrimal gland regeneration and repopulation is possible.
Collapse
Affiliation(s)
- Catherine Y Liu
- Lacrimal Cell Biology Laboratory, University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, Illinois, USA
| | - Masatoshi Hirayama
- Regulatory Biology Laboratory, Salk Institute for biological studies, San Diego, CA, USA
| | - Marwan Ali
- Lacrimal Cell Biology Laboratory, University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, Illinois, USA
| | - Dhara Shah
- Lacrimal Cell Biology Laboratory, University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, Illinois, USA
| | - Vinay K Aakalu
- Lacrimal Cell Biology Laboratory, University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, Illinois, USA
| |
Collapse
|
16
|
Hirayama M, Ko SB, Kawakita T, Akiyama T, Goparaju SK, Soma A, Nakatake Y, Sakota M, Chikazawa-Nohtomi N, Shimmura S, Tsubota K, Ko MS. Identification of transcription factors that promote the differentiation of human pluripotent stem cells into lacrimal gland epithelium-like cells. NPJ Aging Mech Dis 2017; 3:1. [PMID: 28649419 PMCID: PMC5445629 DOI: 10.1038/s41514-016-0001-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 12/03/2016] [Accepted: 12/12/2016] [Indexed: 02/02/2023] Open
Abstract
Dry eye disease is the most prevalent pathological condition in aging eyes. One potential therapeutic strategy is the transplantation of lacrimal glands, generated in vitro from pluripotent stem cells such as human embryonic stem cells, into patients. One of the preceding requirements is a method to differentiate human embryonic stem cells into lacrimal gland epithelium cells. As the first step for this approach, this study aims to identify a set of transcription factors whose overexpression can promote the differentiation of human embryonic stem cells into lacrimal gland epithelium-like cells. We performed microarray analyses of lacrimal glands and lacrimal glands-related organs obtained from mouse embryos and adults, and identified transcription factors enriched in lacrimal gland epithelium cells. We then transfected synthetic messenger RNAs encoding human orthologues of these transcription factors into human embryonic stem cells and examined whether the human embryonic stem cells differentiate into lacrimal gland epithelium-like cells by assessing cell morphology and marker gene expression. The microarray analysis of lacrimal glands tissues identified 16 transcription factors that were enriched in lacrimal gland epithelium cells. We focused on three of the transcription factors, because they are expressed in other glands such as salivary glands and are also known to be involved in the development of lacrimal glands. We tested the overexpression of various combinations of the three transcription factors and PAX6, which is an indispensable gene for lacrimal glands development, in human embryonic stem cells. Combining PAX6, SIX1, and FOXC1 caused significant changes in morphology, i.e., elongated cell shape and increased expression (both RNAs and proteins) of epithelial markers such as cytokeratin15, branching morphogenesis markers such as BARX2, and lacrimal glands markers such as aquaporin5 and lactoferrin. We identified a set of transcription factors enriched in lacrimal gland epithelium cells and demonstrated that the simultaneous overexpression of these transcription factors can differentiate human embryonic stem cells into lacrimal gland epithelium-like cells. This study suggests the possibility of lacrimal glands regeneration from human pluripotent stem cells.
Collapse
Affiliation(s)
- Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582 Japan
| | - Shigeru B.H. Ko
- Department of Systems Medicine, Keio University School of Medicine, Shinjuku, Tokyo 160-8582 Japan
| | - Tetsuya Kawakita
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582 Japan
| | - Tomohiko Akiyama
- Department of Systems Medicine, Keio University School of Medicine, Shinjuku, Tokyo 160-8582 Japan
| | - Sravan K. Goparaju
- Department of Systems Medicine, Keio University School of Medicine, Shinjuku, Tokyo 160-8582 Japan
| | - Atsumi Soma
- Department of Systems Medicine, Keio University School of Medicine, Shinjuku, Tokyo 160-8582 Japan
| | - Yuhki Nakatake
- Department of Systems Medicine, Keio University School of Medicine, Shinjuku, Tokyo 160-8582 Japan
| | - Miki Sakota
- Department of Systems Medicine, Keio University School of Medicine, Shinjuku, Tokyo 160-8582 Japan
| | - Nana Chikazawa-Nohtomi
- Department of Systems Medicine, Keio University School of Medicine, Shinjuku, Tokyo 160-8582 Japan
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582 Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582 Japan
| | - Minoru S.H. Ko
- Department of Systems Medicine, Keio University School of Medicine, Shinjuku, Tokyo 160-8582 Japan
| |
Collapse
|
17
|
Aakalu VK, Parameswaran S, Maienschein-Cline M, Bahroos N, Shah D, Ali M, Krishnakumar S. Human Lacrimal Gland Gene Expression. PLoS One 2017; 12:e0169346. [PMID: 28081151 PMCID: PMC5231359 DOI: 10.1371/journal.pone.0169346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/15/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development. METHODS We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium. RESULTS The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described. CONCLUSIONS Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas.
Collapse
Affiliation(s)
- Vinay Kumar Aakalu
- Lacrimal Cell Biology Laboratory, University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, Illinois, United States of America
- * E-mail:
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, Tamil Nadu, India
| | - Mark Maienschein-Cline
- Research Informatics Core, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Neil Bahroos
- Research Informatics Core, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Dhara Shah
- Lacrimal Cell Biology Laboratory, University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, Illinois, United States of America
| | - Marwan Ali
- Lacrimal Cell Biology Laboratory, University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, Illinois, United States of America
| | - Subramanian Krishnakumar
- Radheshyam Kanoi Stem Cell Laboratory, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, Tamil Nadu, India
| |
Collapse
|