1
|
Moussa SM, Mahmoud SS, Aly EM, Talaat MS. Bio-spectroscopic analysis of corneal structural alterations in dry eye disease: A study of collagen, co-enzymes, lipids, and proteins with emphasis on phytotherapy intervention. Int J Biol Macromol 2024; 280:136010. [PMID: 39326615 DOI: 10.1016/j.ijbiomac.2024.136010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Dry eye disease (DED) stands as a prevalent cause for ophthalmology consultations, securing the third position following refractive errors and cataracts. Moreover, the likelihood of experiencing DED escalates with advancing age. In this experimental study corneal tissue alterations due to DED were investigated over different periods by applying both infrared and synchronous fluorescence spectroscopy. The potential effects of instillation of pomegranate and green tea water extracts as green-friendly treatment modalities were also evaluated. The obtained results collectively indicate that DED affects the OH bearing constituents (collagen, glycosaminoglycans, and proteoglycans) of cornea leading to changes in protein secondary structure and the collagen fibrils. Additionally, enhanced dehydrated environment, and reduced energetic/metabolic state, as indicated by co-enzymes, was observed. Phyto-therapeutic administration can contain these alterations with enhanced energetic/metabolic state and increased hydration environment. In conclusion, instillation of green tea extract can protect/restore the collagen fibrils and its potential effects, in general, exceeds that of pomegranate extract.
Collapse
Affiliation(s)
- Shaimaa M Moussa
- Physics department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sherif S Mahmoud
- Biophysics and Laser Science Unit, Research Institute of Ophthalmology, Giza, Egypt.
| | - Eman M Aly
- Biophysics and Laser Science Unit, Research Institute of Ophthalmology, Giza, Egypt
| | - Mona S Talaat
- Physics department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Rowe K, Gray NE, Zweig JA, Law A, Techen N, Maier CS, Soumyanath A, Kretzschmar D. Centella asiatica and its caffeoylquinic acid and triterpene constituents increase dendritic arborization of mouse primary hippocampal neurons and improve age-related locomotion deficits in Drosophila. FRONTIERS IN AGING 2024; 5:1374905. [PMID: 39055970 PMCID: PMC11269084 DOI: 10.3389/fragi.2024.1374905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024]
Abstract
Introduction Centella asiatica (CA) is known in Ayurvedic medicine as a rejuvenating herb with particular benefits in the nervous system. Two groups of specialized metabolites found in CA and purported to contribute to its beneficial effects are triterpenes (TTs) and caffeoylquinic acids (CQAs). In order to evaluate the role and interactions of TTs and CQAs in the effects of CA, we examined the neurotrophic effects of a water extract of CA (CAW) and combinations of its TT and CQA components in mouse primary hippocampal neurons in vitro and in Drosophila melanogaster flies in vivo. Methods Primary hippocampal neurons were isolated from mouse embryos and exposed in vitro for 5 days to CAW (50 μg/mL), mixtures of TTs, CQAs or TT + CQA components or to 4 TTs or 8 individual CQA compounds of CAW. Dendritic arborization was evaluated using Sholl analysis. Drosophila flies were aged to 28 days and treated for 2 weeks with CAW (10 mg/mL) in the food, mixtures of TTs, CQAs or TT + CQA and individual TT and CQA compounds. TTs and CQAs were tested at concentrations matching their levels in the CAW treatment used. After 2 weeks of treatment, Drosophila aged 42 days were evaluated for phototaxis responses. Results In mouse primary hippocampal neurons, CAW (50 μg/mL), the TT mix, CQA mix, all individual TTs and most CQAs significantly increased dendritic arborization to greater than control levels. However, the TT + CQA combination significantly decreased dendritic arborization. In Drosophila, a marked age-related decline in fast phototaxis response was observed in both males and females over a 60 days period. However, resilience to this decline was afforded in both male and female flies by treatment from 28 days onwards with CAW (10 mg/mL), or equivalent concentrations of mixed TTs, mixed CQAs and a TT + CQA mix. Of all the individual compounds, only 1,5-diCQA slowed age-related decline in phototaxis in male and female flies. Discussion This study confirmed the ability of CAW to increase mouse neuronal dendritic arborization, and to provide resilience to age-related neurological decline in Drosophila. The TT and CQA components both contribute to these effects but do not have a synergistic effect. While individual TTs and most individual CQAs increased dendritic arborization at CAW equivalent concentrations, in the Drosophila model, only 1,5-diCQA was able to slow down the age-related decline in phototaxis. This suggests that combinations (or potentially higher concentrations) of the other compounds are needed to provide resilience in this model.
Collapse
Affiliation(s)
- Karon Rowe
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, United States
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Nora E. Gray
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, United States
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Jonathan A. Zweig
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, United States
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Alexander Law
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, United States
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Natascha Techen
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, United States
- National Center for Natural Products Research, University of Mississippi, Oxford, MS, United States
| | - Claudia S. Maier
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, United States
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Amala Soumyanath
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, United States
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Doris Kretzschmar
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, United States
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
3
|
Cong Y, Zhang Y, Han Y, Wu Y, Wang D, Zhang B. Recommendations for nutritional supplements for dry eye disease: current advances. Front Pharmacol 2024; 15:1388787. [PMID: 38873421 PMCID: PMC11169594 DOI: 10.3389/fphar.2024.1388787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/17/2024] [Indexed: 06/15/2024] Open
Abstract
Dry eye disease (DED) represents a prevalent ocular surface disease. The development of effective nutritional management strategies for DED is crucial due to its association with various factors such as inflammation, oxidative stress, deficiencies in polyunsaturated fatty acids (PUFAs), imbalanced PUFA ratios, and vitamin insufficiencies. Extensive research has explored the impact of oral nutritional supplements, varying in composition and dosage, on the symptoms of DED. The main components of these supplements include fish oils (Omega-3 fatty acids), vitamins, trace elements, and phytochemical extracts. Beyond these well-known nutrients, it is necessary to explore whether novel nutrients might contribute to more effective DED management. This review provides a comprehensive update on the therapeutic potential of nutrients and presents new perspectives for combination supplements in DED treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Bingjie Zhang
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Zhou Y, Ma B, Liu Q, Duan H, Huo Y, Zhao L, Chen J, Han W, Qi H. Transmembrane Protein CMTM6 Alleviates Ocular Inflammatory Response and Improves Corneal Epithelial Barrier Function in Experimental Dry Eye. Invest Ophthalmol Vis Sci 2024; 65:4. [PMID: 38165704 PMCID: PMC10768713 DOI: 10.1167/iovs.65.1.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/04/2023] [Indexed: 01/04/2024] Open
Abstract
Purpose To investigate the impact of transmembrane protein CMTM6 on the pathogenesis of dry eye disease (DED) and elucidate its potential mechanisms. Methods CMTM6 expression was confirmed by database analysis, real-time polymerase chain reaction (RT-PCR), western blot, and immunohistochemistry. Tear secretion was measured using the phenol red thread test. Immune cell infiltration was assessed through flow cytometry. Barrier function was evaluated by fluorescein sodium staining, immunofluorescence staining of zonula occludens 1 (ZO-1), and electric cell-substrate impedance sensing (ECIS) assessment. For silencing CMTM6 expression, siRNA and shRNA were employed, along with lentiviral vector-mediated overexpression of CMTM6. Proinflammatory cytokine levels were analyzed by RT-PCR and cytometric bead array (CBA) analysis. Results CMTM6 showed high expression in healthy human and mouse corneal and conjunctival epithelium but was notably reduced in DED. Notably, this downregulation was correlated with disease severity. Cmtm6-/- dry eye (DE) mice displayed reduced tear secretion, severe corneal epithelial defects, decreased conjunctival goblet cell density, and upregulated inflammatory response. Additionally, Cmtm6-/- DE mice and CMTM6 knockdown human corneal epithelial cell-transformed (HCE-T) cells showed more severe barrier disruption and reduced expression of ZO-1. Knockdown of CMTM6 in HCE-T cells increased inflammatory responses induced by hyperosmotic stress, which was significantly mitigated by CMTM6 overexpression. Moreover, the level of phospho-p65 in hyperosmolarity-stimulated HCE-T cells increased after silencing CMTM6. Nuclear factor kappa B (NF-κB) p65 inhibition (JSH-23) reversed the excessive inflammatory responses caused by hyperosmolarity in CMTM6 knockdown HCE-T cells. Conclusions The reduction in CMTM6 expression on the ocular surface contributes to the pathogenesis of DED. The CMTM6-NF-κB p65 signaling pathway may serve as a promising therapeutic target for DED.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Baikai Ma
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Qiyao Liu
- Department of Immunology, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology, Beijing, China
- Peking University Center for Human Disease Genomics, Beijing, China
| | - Hongyu Duan
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Yangbo Huo
- Department of Immunology, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology, Beijing, China
- Peking University Center for Human Disease Genomics, Beijing, China
| | - Lu Zhao
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jiawei Chen
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Wenling Han
- Department of Immunology, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology, Beijing, China
- Peking University Center for Human Disease Genomics, Beijing, China
| | - Hong Qi
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| |
Collapse
|