1
|
Wang R, Yang W, Cai C, Zhong M, Dai X. Dose-response and type-dependent effects of antiviral drugs in anaerobic digestion of waste-activated sludge for biogas production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27045-7. [PMID: 37209333 DOI: 10.1007/s11356-023-27045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/11/2023] [Indexed: 05/22/2023]
Abstract
In the context of the COVID-19 pandemic, antiviral drugs (AVDs) were heavily excreted into wastewater and subsequently enriched in sewage sludge due to their widespread use. The potential ecological risks of AVDs have attracted increasing attention, but information on the effects of AVDs on sludge anaerobic digestion (AD) is limited. In this study, two typical AVDs (lamivudine and ritonavir) were selected to investigate the responses of AD to AVDs by biochemical methane potential tests. The results indicated that the effects of AVDs on methane production from sludge AD were dose- and type-dependent. The increased ritonavir concentration (0.05-50 mg/kg TS) contributed to an 11.27-49.43% increase in methane production compared with the control. However, methane production was significantly decreased at high lamivudine doses (50 mg/kg TS). Correspondingly, bacteria related to acidification were affected when exposed to lamivudine and ritonavir. Acetoclastic and hydrotropic methanogens were inhibited at a high lamivudine dose, while ritonavir enriched methylotrophic and hydrotropic methanogens. Based on the analysis of intermediate metabolites, the inhibition of lamivudine and the promotion of ritonavir on acidification and methanation were confirmed. In addition, the existence of AVDs could affect sludge properties. Sludge solubilization was inhibited when exposed to lamivudine and enhanced by ritonavir, perhaps caused by their different structures and physicochemical properties. Moreover, lamivudine and ritonavir could be partially degraded by AD, but 50.2-68.8% of AVDs remained in digested sludge, implying environmental risks.
Collapse
Affiliation(s)
- Rui Wang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Wan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Menghuan Zhong
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
2
|
Da Ruos J, Baldo MA, Daniele S. Analytical Methods for the Determination of Major Drugs Used for the Treatment of COVID-19. A Review. Crit Rev Anal Chem 2022; 53:1698-1732. [PMID: 35195461 DOI: 10.1080/10408347.2022.2039094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
At the beginning of the COVID-19 outbreak (end 2019 - 2020), therapeutic treatments based on approved drugs have been the fastest approaches to combat the new coronavirus pandemic. Nowadays several vaccines are available. However, the worldwide vaccination program is going to take a long time and its success will depend on the vaccine public's acceptance. Therefore, outside of vaccination, the repurposing of existing antiviral, anti-inflammatory and other types of drugs, have been considered an alternative medical strategy for the COVI-19 infection. Due to the broad clinical potential of the drugs, but also to their possible side effects, analytical methods are needed to monitor the drug concentrations in biological fluids and pharmaceutical products. This review deals with analytical methods developed in the period 2015 - July 2021 to detect potential drugs that, according to a literature survey, have been taken into consideration for the treatment of COVID-19. The drugs considered here have been selected on the basis of the number of articles published in the period January 2020-July 2021, using the combination of the keywords: COVID-19 and drugs or SARS-CoV-2 and drugs. A section is also devoted to monoclonal antibodies. Over the period considered, the analytical methods have been employed in a variety of real samples, such as body fluids (plasma, blood and urine), pharmaceutical products, environmental matrices and food.
Collapse
Affiliation(s)
- Jessica Da Ruos
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| | - M Antonietta Baldo
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| | - Salvatore Daniele
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| |
Collapse
|
3
|
Amir M, Narula P, Bano F. Analytical Techniques for the Analysis of Lopinavir and Ritonavir in Pharmaceutical Dosage Form and Biological Matrices: A Review. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412918666211217145200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Lopinavir and Ritonavir are the protease inhibitor type of anti-retroviral drugs. Both are used for the treatment of HIV/AIDS. This paper reviews many analytical methods for the analysis of LPV and RTV in pharmaceutical formulations (tablet, capsule, syrup, and bulk) and biological fluids (human plasma, serum, cerebrospinal fluid, rat plasma, and human hair).
Objective:
The study aims to summarize various ana¬lytical techniques, such as Chromatography, Spectrophotometry; and also hyphenated techniques, such as LC-MS/MS, UPLC-MS for analysis of Lopinavir and Ritonavir.
Method:
The review deals with com¬prehensive details about the type of various analytical techniques, such as spectroscopy (UV), chromatography (RP-HPLC, HPTLC, UPLC), and hyphenated techniques, i.e., LC-MS/MS, UPLC-MS for the analysis of lopinavir and ritonavir. These techniques are either explored for the quantification, de¬tection of metabolite or for stability studies of the LPV & RTV.
Conclusion:
The present studies revealed that the HPLC technique along with the spectro-scopic, have been most widely used for the analysis. Out of the developed methods, hyphenated UPLC-MS and LC-MS are very sensitive and helps in the easy estimation of drugs compared to that of the other techniques. This review may provide comprehensive details to the researchers working in the area of analytical research of LPV & RTV.
Collapse
Affiliation(s)
- Mohammad Amir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi-110062, India
| | - Puneet Narula
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi-110062, India
| | - Farzana Bano
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
4
|
Velozo CT, Cabral LM, Pinto EC, de Sousa VP. Lopinavir/Ritonavir: A Review of Analytical Methodologies for the Drug Substances, Pharmaceutical Formulations and Biological Matrices. Crit Rev Anal Chem 2021; 52:1846-1862. [PMID: 34024199 DOI: 10.1080/10408347.2021.1920364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Lopinavir/ritonavir is a potent coformulation of protease inhibitors used against HIV infection. Lopinavir is the main responsible for viral load suppression, whereas ritonavir is a pharmacokinetic enhancer. Both of them have recently gained relevance as candidate drugs against severe coronavirus disease (COVID-19). However, significant beneficial effects were not observed in randomized clinical trials. This review summarizes the main physical-chemical, pharmacodynamic, and pharmacokinetic properties of ritonavir and lopinavir, along with the analytical methodologies applied for biological matrices, pharmaceutical formulations, and stability studies. The work also aimed to provide a comprehensive impurity profile for the combined formulation. Several analytical methods in four different pharmacopeias and 37 articles in literature were evaluated and summarized. Chromatographic methods for these drugs frequently use C8 or C18 stationary phases with acetonitrile and phosphate buffer (with ultraviolet detection) or acetate buffer (with tandem mass spectrometry detection) as the mobile phase. Official compendia methods show disadvantages as extended total run time and complex mobile phases. HPLC tandem-mass spectrometry provided high sensitivity in methodologies applied for human plasma and serum samples, supporting the therapeutic drug monitoring in HIV patients. Ritonavir and lopinavir major degradation products arise in alkaline and acidic environments, respectively. Other non-chromatographic methods were also summarized. Establishing the impurity profile for the combined formulation is challenging due to a large number of impurities reported. Easier and faster analytical methods for impurity assessment are still needed.
Collapse
Affiliation(s)
- Carolina Trajano Velozo
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucio Mendes Cabral
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo Costa Pinto
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valéria Pereira de Sousa
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Kashish G, Nisha P, Hiren K. Analytical Techniques in the Analysis of Darunavir and Ritonavir: A Review. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190206124808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Darunavir and Ritonavir are amongst the most useful antiretroviral drugs worldwide for treating
AIDS (acquired immune deficiency syndrome). This review discussed and summarized the various
analytical techniques used in the qualitative and quantitative analysis of darunavir and ritonavir, protease
inhibitors (PIs), which have gained importance as antiretroviral drugs. The importance and use of
chromatographic techniques for the estimation of darunavir and ritonavir are also discussed herein. This
review highlights the various advanced analytical techniques such as spectroscopic, chromatographic,
electrophoresis, X-ray powder diffraction and their corresponding methods.
Collapse
Affiliation(s)
- Goswami Kashish
- Department Quality Assurance, Arihant School of Pharmacy and Bio-Research Institute, Adalaj, Gandhinagar, Gujarat, India
| | - Parikh Nisha
- Department Quality Assurance, Arihant School of Pharmacy and Bio-Research Institute, Adalaj, Gandhinagar, Gujarat, India
| | - Kadikar Hiren
- Department Quality Assurance, Arihant School of Pharmacy and Bio-Research Institute, Adalaj, Gandhinagar, Gujarat, India
| |
Collapse
|