1
|
Ali AAM, Mansour AB, Attia SA. The potential protective role of apigenin against oxidative damage induced by nickel oxide nanoparticles in liver and kidney of male Wistar rat, Rattus norvegicus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27577-27592. [PMID: 33515148 DOI: 10.1007/s11356-021-12632-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Nickel oxide nanoparticles (NiONPs) are involved in several applications but still have some adverse effects. Apigenin (APG) is a widespread natural product with antioxidative, anticancer, and anti-inflammatory properties. The present work aimed to study the protective role of APG against the NiONP-induced toxicity in male Wistar rats. Rats were randomly distributed to one control group and three treated groups. The treated groups were orally administered NiONPs (100 mg/kg) alone, APG (25 mg/kg) alone, or APG 1 h before NiONPs, once daily for 28 days. Blood, liver, and kidney were collected after 7, 14, and 28 days of administration for Ni accumulation, hematological, biochemical, histological, and transmission electron microscopy (TEM) investigations. As compared to the controls, the administration of NiONPs alone significantly elevated the levels of Ni, malondialdehyde, total cholesterol, low-density lipoprotein cholesterol, creatinine, urea, blood urea nitrogen, and the activity of alanine and aspartate aminotransferases as well as the count of white blood cells. Besides, marked reductions in the activity of superoxide dismutase, and the levels of glutathione, high-density lipoprotein cholesterol, total proteins, albumin, globulin, hemoglobin, packed cell volume, and red blood cell count were reported. Histologically, the liver and kidney of rats administered NiONPs alone showed remarkable disturbances. According to TEM, subcellular alterations were observed in the liver and kidney of rats administered NiONPs alone. In contrast, APG administering before NiONPs substantially alleviated all the studied parameters. In conclusion, APG can ameliorate the NiONP-induced hepatotoxicity and nephrotoxicity in male Wistar rats.
Collapse
|
2
|
Liu J, Qu J, Chen H, Ge P, Jiang Y, Xu C, Chen H, Shang D, Zhang G. The pathogenesis of renal injury in obstructive jaundice: A review of underlying mechanisms, inducible agents and therapeutic strategies. Pharmacol Res 2020; 163:105311. [PMID: 33246170 DOI: 10.1016/j.phrs.2020.105311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/30/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022]
Abstract
Kidney injury is one of the main complications of obstructive jaundice (OJ) and its pathogenesis has not been clarified. As an independent risk factor for OJ associated with significant morbidity and mortality, it can be mainly divided into two types of morphological injury and functional injury. We called these dysfunctions caused by OJ-induced kidney injury as OJKI. However, the etiology of OJKI is still not fully clear, and research studies on how OJKI becomes a facilitated factor of OJ are limited. This article reviews the underlying pathological mechanism from five aspects, including metabolisms of bile acids, hemodynamic disturbances, oxidative stress, inflammation and the organic transporter system. Some nephrotoxic drugs and measures that can enhance or reduce the renal function with potential intervention in perioperative periods to alleviate the incidence of OJKI were also described. Furthermore, a more in-depth study on the pathogenesis of OJKI from multiple aspects for exploring more targeted treatment measures were further put forward, which may provide new methods for the prevention and treatment of clinical OJKI and improve the prognosis.
Collapse
Affiliation(s)
- Jiayue Liu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Jialin Qu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
| | - Haiyang Chen
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Peng Ge
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Yuankuan Jiang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Caiming Xu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China; Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Hailong Chen
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China; Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Dong Shang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China; Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Guixin Zhang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China.
| |
Collapse
|
3
|
Ali AAM. Evaluation of some biological, biochemical, and hematological aspects in male albino rats after acute exposure to the nano-structured oxides of nickel and cobalt. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:17407-17417. [PMID: 31020524 DOI: 10.1007/s11356-019-05093-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Nanomaterial applications are a fast-developing field. In spite of their powerful advantages, many open questions regarding how these small-sized chemicals may influence the environment and human health. However, scarce reports are available on the potential hazards of combined nanoparticles, taken into consideration that nickel oxide (NiO) and cobalt (II, III) oxide (Co3O4) nanoparticles (NPs) are already used together in many applications. Hence, the present work was designed to study the probable changes in some biological, hematological, and serum biochemical variables throughout 2 weeks following an oral administration of 0.5 g and 1.0 g of NiO-NPs or/and Co3O4-NPs per kilogram body weight of rats. As compared with the controls, the exposure to NiO-NPs or Co3O4-NPs solely caused significant elevations in the relative weights of brain (RBW), kidney (RKW) and liver (RLW), water consumption (WC), red blood cells (RBCs) count, hemoglobin (Hb) content, packed cell volume (PCV), and serum levels of low-density lipoprotein cholesterol (LDL-C), glucose, creatinine, urea, and uric acid as well as serum activities of aspartate and alanine aminotransferases (ASAT and ALAT). In addition, remarkable declines in the total body weight (TBW), feed consumption (FC), white blood cells (WBCs) count, serum levels of total protein (TP), albumin, albumin/globulin ratio, total cholesterol (TC), triglycerides (TG), and high-density lipoprotein cholesterol (HDL-C) were caused by administration of NiO-NPs or Co3O4-NPs, separately. On contrary, the co-administration of NiO-NPs and Co3O4-NPs together caused less noticeable changes in most of studied variables as compared with those administered NiO-NPs or Co3O4-NPs, individually. In conclusion, the exposure to a combination of NiO-NPs and Co3O4-NPs suppressed the adverse effects of the individual NPs on the studied variables.
Collapse
Affiliation(s)
- Atef Abdel-Moneem Ali
- Department of Zoology, Faculty of Science, Cairo University, PO Box 12613, Giza, Egypt.
| |
Collapse
|