1
|
Wang M, Hong Y, Fu X, Sun X. Advances and applications of biomimetic biomaterials for endogenous skin regeneration. Bioact Mater 2024; 39:492-520. [PMID: 38883311 PMCID: PMC11179177 DOI: 10.1016/j.bioactmat.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 06/18/2024] Open
Abstract
Endogenous regeneration is becoming an increasingly important strategy for wound healing as it facilitates skin's own regenerative potential for self-healing, thereby avoiding the risks of immune rejection and exogenous infection. However, currently applied biomaterials for inducing endogenous skin regeneration are simplistic in their structure and function, lacking the ability to accurately mimic the intricate tissue structure and regulate the disordered microenvironment. Novel biomimetic biomaterials with precise structure, chemical composition, and biophysical properties offer a promising avenue for achieving perfect endogenous skin regeneration. Here, we outline the recent advances in biomimetic materials induced endogenous skin regeneration from the aspects of structural and functional mimicry, physiological process regulation, and biophysical property design. Furthermore, novel techniques including in situ reprograming, flexible electronic skin, artificial intelligence, single-cell sequencing, and spatial transcriptomics, which have potential to contribute to the development of biomimetic biomaterials are highlighted. Finally, the prospects and challenges of further research and application of biomimetic biomaterials are discussed. This review provides reference to address the clinical problems of rapid and high-quality skin regeneration.
Collapse
Affiliation(s)
- Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| |
Collapse
|
2
|
George RE, Bay CC, Thornton SM, Knazze JT, Kane NC, Ludwig KA, Donnelly DT, Poore SO, Dingle AM. Can Electrical Stimulation Prevent Recurrence of Keloid Scars? A Scoping Review. Adv Wound Care (New Rochelle) 2024. [PMID: 38888004 DOI: 10.1089/wound.2023.0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024] Open
Abstract
Objective: Keloids represent a symptomatic, aberrant healing process that is difficult to treat with high recurrence rates spanning from 55% to 100% if treated via excision without adjuvant therapy. Electrical stimulation (ES) has demonstrated findings that suggest it could reduce the recurrence rate of keloids after resection. Therefore, the aim of this study is to conduct a scoping review to investigate ES as an adjuvant therapy for decreasing keloid recurrence after excision. Approach: A scoping review was performed using PubMed and Web of Science databases. The search strategy encompassed terms linking keloids and various aspects of electrical stimulation. Results: Our search yielded 2,229 articles, of which 115 articles were analyzed as full text and 1 article met inclusion criteria. Despite this, ES has demonstrated other evidence that suggests its utility. ES has been shown to counter keloidic features by reducing mast cell counts, shifting wound composition from M2 to M1 macrophages, promoting angiogenesis, and controlling fibroblast orientation and location. An alternating current will orient fibroblasts perpendicular to the current without unintended migration. Innovation: Our study indicates that, based on a compilation of clinical and preclinical in vitro data, the optimal scenario for ES in the role of keloid treatment is after excision with a biphasic pulsed application and square waveform. Conclusions: ES could serve as a multifaceted, adjuvant treatment after keloid excision, steering the healing process away from keloid-associated characteristics. Its cost-effectiveness means it could be adopted globally, providing a strategy to mitigate the burden of keloids irrespective of other available treatments or economic conditions.
Collapse
Affiliation(s)
- Robert E George
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Caroline C Bay
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sarah M Thornton
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jessieka T Knazze
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nicole C Kane
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kip A Ludwig
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Translational Neuroengineering, Madison, Wisconsin, USA
| | - D'Andrea T Donnelly
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Samuel O Poore
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aaron M Dingle
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Kong J, Teng C, Liu F, Wang X, Zhou Y, Zong Y, Wan Z, Qin J, Yu B, Mi D, Wang Y. Enhancing regeneration and repair of long-distance peripheral nerve defect injuries with continuous microcurrent electrical nerve stimulation. Front Neurosci 2024; 18:1361590. [PMID: 38406586 PMCID: PMC10885699 DOI: 10.3389/fnins.2024.1361590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Peripheral nerve injuries, especially those involving long-distance deficits, pose significant challenges in clinical repair. This study explores the potential of continuous microcurrent electrical nerve stimulation (cMENS) as an adjunctive strategy to promote regeneration and repair in such cases. Methods The study initially optimized cMENS parameters and assessed its impact on Schwann cell activity, neurotrophic factor secretion, and the nerve regeneration microenvironment. Subsequently, a rat sciatic nerve defect-bridge repair model was employed to evaluate the reparative effects of cMENS as an adjuvant treatment. Functional recovery was assessed through gait analysis, motor function tests, and nerve conduction assessments. Additionally, nerve regeneration and denervated muscle atrophy were observed through histological examination. Results The study identified a 10-day regimen of 100uA microcurrent stimulation as optimal. Evaluation focused on Schwann cell activity and the microenvironment, revealing the positive impact of cMENS on maintaining denervated Schwann cell proliferation and enhancing neurotrophic factor secretion. In the rat model of sciatic nerve defect-bridge repair, cMENS demonstrated superior effects compared to control groups, promoting motor function recovery, nerve conduction, and sensory and motor neuron regeneration. Histological examinations revealed enhanced maturation of regenerated nerve fibers and reduced denervated muscle atrophy. Discussion While cMENS shows promise as an adjuvant treatment for long-distance nerve defects, future research should explore extended stimulation durations and potential synergies with tissue engineering grafts to improve outcomes. This study contributes comprehensive evidence supporting the efficacy of cMENS in enhancing peripheral nerve regeneration.
Collapse
Affiliation(s)
- Junjie Kong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Cheng Teng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fenglan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xuzhaoyu Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yi Zhou
- Department of Orthopedics, Nantong City Hospital of Traditional Chinese Medicine, Nantong, China
| | - Ying Zong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zixin Wan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jun Qin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Daguo Mi
- Department of Orthopedics, Nantong City Hospital of Traditional Chinese Medicine, Nantong, China
| | - Yaxian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
4
|
Zang X, Gao F, Zhang Z, Shen L, Pan Y. Synergistic effects of electroactive antibacterial material and electrical stimulation in enhancing skin tissue regeneration: A next-generation dermal wound dressing. Skin Res Technol 2023; 29:e13465. [PMID: 38009021 PMCID: PMC10603310 DOI: 10.1111/srt.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/29/2023] [Indexed: 11/28/2023]
Abstract
OBJECTIVE We aimed to develop an electroactive antibacterial material for the treatment of skin wound diseases. METHOD To this aim, we modified chitosan (CS), a biocompatible polymer, by coupling it with graphene (rGO) and an antimicrobial polypeptide DOPA-PonG1. The material's effect on skin injury healing was studied in combination with external electrical stimulation (EEM). The structure, surface composition, and hydrophilicity of the modified CS materials were evaluated using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and contact angle measurements. We studied NIH3T3 cells cultured with modified materials and subjected to EEM to assess viability, adhesion, and tissue repair-related gene expression. RESULTS SEM data demonstrated that rGO was distributed uniformly on the surface of the CS material, increasing surface roughness, and antimicrobial peptides had minimal impact on surface morphology. FTIR confirmed the uniform distribution of rGO and antibacterial peptides on the material surface. Both rGO and DOPA-PonG1 enhanced the hydrophilicity of CS materials, with rGO also improving tensile strength. The dual modification of CS with rGO and DOPA-PonG1 synergistically increased antibacterial efficacy. Cellular events and gene expression relevant to tissue repair process were enhanced by these modifications. Furthermore, EEM accelerated epidermal regeneration more than the material alone. In a rat skin wound model, DOPA-PonG1@CS/rGO dressing combined with electrical stimulation exhibited accelerated healing of skin defect. CONCLUSION Overall, our results demonstrate that CS materials modified with rGO and DOPA-PonG1 have increased hydrophilicity, antibacterial characteristics, and tissue regeneration capacities. This modified material in conjunction with EEM hold promise for the clinical management for dermal wounds.
Collapse
Affiliation(s)
| | - Fei Gao
- Qingdao UniversityQingdaoShandongChina
| | | | - Lin‐Hua Shen
- Department of Trauma Microsurgery970 Hospital of the PLA Joint Logistic Support ForceYantaiShandongChina
| | | |
Collapse
|
5
|
Belanger AY, Selkowitz DM, Lawson D. On Putting an End to the Backlash Against Electrophysical Agents. Int J Sports Phys Ther 2023; 18:1230-1237. [PMID: 37795329 PMCID: PMC10547080 DOI: 10.26603/001c.87813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/16/2023] [Indexed: 10/06/2023] Open
Abstract
Electrophysical agents (EPAs) are core therapeutic interventions in academic physical therapy curricula around the world. They are used concomitantly with several other therapeutic interventions such as exercise, manual therapy techniques, medications, and surgery for the management of a wide variety of soft tissue disorders. Over the past decade, the practice of EPAs has been the subject of intense scrutiny in the U.S. This has been colored by some physical therapists publicly engaging in bashing rhetoric that has yet to be officially and publicly addressed by the guiding organizations which, together, regulate the practice of physical therapy in this country. Published in world renowned public media are unsubstantiated mocking remarks against the practice of EPAs and unethical allegations against its stakeholders. This rhetoric suggests that EPA interventions are "magical" treatments and that those practitioners who include them in their plans of care may be committing fraud. Such bashing rhetoric is in striking contradiction to the APTA's Guide to Physical Therapist Practice 4.0, which lists EPAs as one of its categories of interventions, the CAPTE's program accreditation policy, and the FSBPT's national licensing exam. The purpose of this commentary is to expose the extent of this discourse and to call to action the APTA, CAPTE, and FSBPT organizations, as well as physical therapists, with the aim at putting an end to this rhetoric.
Collapse
|
6
|
Du W, He L, Wang Z, Dong Y, He X, Hu J, Zhang M. Serum lipidomics-based study of electroacupuncture for skin wound repair in rats. J Cell Mol Med 2023; 27:3127-3146. [PMID: 37517065 PMCID: PMC10568671 DOI: 10.1111/jcmm.17891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 08/01/2023] Open
Abstract
Lipid metabolism plays an important role in the repair of skin wounds. Studies have shown that acupuncture is very effective in skin wound repair. However, there is little knowledge about the mechanism of electroacupuncture. Thirty-six SD rats were divided into three groups: sham-operated group, model group and electroacupuncture group, with six rats in each group. After the intervention, orbital venous blood was collected for lipid metabolomics analysis, wound perfusion was detected and finally the effect of electroacupuncture on skin wound repair was comprehensively evaluated by combining wound healing rate and histology. Lipid metabolomics analysis revealed 11 differential metabolites in the model versus sham-operated group. There were 115 differential metabolites in the model versus electro-acupuncture group. 117 differential metabolites in the electro-acupuncture versus sham-operated group. There were two differential metabolites common to all three groups. Mainly cholesteryl esters and sphingolipids were elevated after electroacupuncture and triglycerides were largely decreased after electroacupuncture. The electroacupuncture group recovered faster than the model group in terms of blood perfusion and wound healing (p < 0.05). Electroacupuncture may promote rat skin wound repair by improving lipid metabolism and improving local perfusion.
Collapse
Affiliation(s)
- Weibin Du
- Research Institute of OrthopaedicsThe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| | - Lihong He
- Research Institute of OrthopaedicsThe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| | - Zhenwei Wang
- Research Institute of OrthopaedicsThe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| | - Yi Dong
- Shaoxing TCM Hospital Affiliated to Zhejiang Chinese Medical UniversityZhejiangChina
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchZhejiang Chinese Medical University, The Third Clinical Medical CollegeZhejiangChina
| | - Jintao Hu
- Orthopaedics and Traumatology DepartmentHangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical UniversityZhejiangChina
| | - Min Zhang
- Research Institute of OrthopaedicsThe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| |
Collapse
|
7
|
Kurz P, Danner G, Lembelembe J, Nair HKR, Martin R. Activation of healing and reduction of pain by single-use automated microcurrent electrical stimulation therapy in patients with hard-to-heal wounds. Int Wound J 2023; 20:2053-2061. [PMID: 36601702 PMCID: PMC10333020 DOI: 10.1111/iwj.14071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 01/06/2023] Open
Abstract
Evidence shows that Electrical Stimulation Therapy (EST) accelerates healing and reduces pain, but EST has yet to become widely used. One reason is the historical use of complex, clinic-based EST devices. This evaluation assessed the early response of different hard-to-heal wounds to a simple, wearable, single-use, automated microcurrent EST device (Accel-Heal, Accel-Heal Technologies Limited - Hever, UK). Forty wounds (39 patients: 18 female - 21 male), mean age 68.9 ± 14.0 years comprised of: seven post-surgical, three trauma, 12 diabetic foot (DFU), 10 venous (VLU), four pressure injuries (PI), four mixed venous or arterial ulcers (VLU/arterial) received automated microcurrent EST for 12 days. Early clinical responses were scored on a 0-5 scale (5-excellent-0-no response). Pain was assessed at 48 h, seven days, and 14 days on a 0-10 visual analogue scale (VAS). Overall, 78% of wounds showed a marked positive clinical response (scores of 5 and 4). Sixty eight percent of wounds were painful with a mean VAS score of 5.5. Almost every patient (96%) with pain experienced reduction within 48 h. All patients with painful wounds experienced pain reduction after seven days: 2.50 VAS (45% reduction) and further pain reduction after 14 days: 1.83 VAS (33%).
Collapse
Affiliation(s)
- Peter Kurz
- WPM Wund Pflege Management GmbHBad PirawarthAustria
| | | | - Jean‐Paul Lembelembe
- Department, Geriatrics & Wound Day HospitalClinique des AugustinesMalestroitFrance
| | | | - Robin Martin
- Robin Martin PhD Scientific ConsultingFoggathorpeUK
| |
Collapse
|
8
|
Du W, Wang Z, Dong Y, Hu H, Zhou H, He X, Hu J, Li Y. Electroacupuncture promotes skin wound repair by improving lipid metabolism and inhibiting ferroptosis. J Cell Mol Med 2023; 27:2308-2320. [PMID: 37307402 PMCID: PMC10424292 DOI: 10.1111/jcmm.17811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/27/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023] Open
Abstract
Lipid metabolism plays an important role in the repair of skin wounds. Studies have shown that acupuncture is very effective in skin wound repair. However, there is little knowledge about the mechanism of electroacupuncture. Thirty-six SD rats were divided into three groups: sham-operated group, model group and electroacupuncture group, with 12 rats in each group. After the intervention, local skin tissues were collected for lipid metabolomics analysis, wound perfusion and ferroptosis-related indexes were detected and finally the effect of electroacupuncture on skin wound repair was comprehensively evaluated by combining wound healing rate and histology. Lipid metabolomics analysis revealed 37 differential metabolites shared by the three groups, mainly phospholipids, lysophospholipids, glycerides, acylcarnitine, sphingolipids and fatty acids, and they could be back-regulated after electroacupuncture. The recovery of blood perfusion and wound healing was faster in the electroacupuncture group than in the model group (p < 0.05). The levels of GPX4, FTH1, SOD and GSH-PX, which are related to ferroptosis, were higher in the electroacupuncture group than in the model group (p < 0.05). The levels of ACSL4 and MDA were lower in the electroacupuncture group than in the model group (p < 0.05). Electroacupuncture may promote skin wound repair by improving lipid metabolism and inhibiting ferroptosis in local tissues.
Collapse
Affiliation(s)
- Weibin Du
- Research Institute of Orthopaedicsthe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| | - Zhenwei Wang
- Research Institute of Orthopaedicsthe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| | - Yi Dong
- Shaoxing TCM Hospital Affiliated to Zhejiang Chinese Medical UniversityZhejiangChina
| | - Huahui Hu
- Research Institute of Orthopaedicsthe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| | - Huateng Zhou
- Research Institute of Orthopaedicsthe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityZhejiangChina
| | - Jintao Hu
- Orthopaedics and Traumatology DepartmentHangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical UniversityZhejiangChina
| | - Yong Li
- Research Institute of Orthopaedicsthe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| |
Collapse
|
9
|
Li H, Li B, Lv D, Li W, Lu Y, Luo G. Biomaterials releasing drug responsively to promote wound healing via regulation of pathological microenvironment. Adv Drug Deliv Rev 2023; 196:114778. [PMID: 36931347 DOI: 10.1016/j.addr.2023.114778] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Wound healing is characterized by complex, orchestrated, spatiotemporal dynamic processes. Recent findings demonstrated suitable local microenvironments were necessities for wound healing. Wound microenvironments include various biological, biochemical and physical factors, which are produced and regulated by endogenous biomediators, exogenous drugs, and external environment. Successful drug delivery to wound is complicated, and need to overcome the destroyed blood supply, persistent inflammation and enzymes, spatiotemporal requirements of special supplements, and easy deactivation of drugs. Triggered by various factors from wound microenvironment itself or external elements, stimuli-responsive biomaterials have tremendous advantages of precise drug delivery and release. Here, we discuss recent advances of stimuli-responsive biomaterials to regulate local microenvironments during wound healing, emphasizing on the design and application of different biomaterials which respond to wound biological/biochemical microenvironments (ROS, pH, enzymes, glucose and glutathione), physical microenvironments (mechanical force, temperature, light, ultrasound, magnetic and electric field), and the combination modes. Moreover, several novel promising drug carriers (microbiota, metal-organic frameworks and microneedles) are also discussed.
Collapse
Affiliation(s)
- Haisheng Li
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Buying Li
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dalun Lv
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Wannan Medical College, Wuhu City, China; Beijing Jayyalife Biological Technology Company, Beijing, China
| | - Wenhong Li
- Beijing Jayyalife Biological Technology Company, Beijing, China
| | - Yifei Lu
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
10
|
Avendaño-Coy J, Martín-Espinosa NM, Ladriñán-Maestro A, Gómez-Soriano J, Suárez-Miranda MI, López-Muñoz P. Effectiveness of Microcurrent Therapy for Treating Pressure Ulcers in Older People: A Double-Blind, Controlled, Randomized Clinical Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10045. [PMID: 36011679 PMCID: PMC9408011 DOI: 10.3390/ijerph191610045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to assess the effectiveness of microcurrent therapy for healing pressure ulcers in aged people. A multicentric, randomized clinical trial was designed with a sham stimulation control. The experimental group received an intervention following a standardized protocol for curing ulcers combined with 10 h of microcurrent therapy daily for 25 days. The sham group received the same curing protocol plus a sham microcurrent stimulation. The studied healing-related variables were the Pressure Ulcer Scale for Healing (PUSH) and the surface, depth, grade, and number of ulcers that healed completely. Three evaluations were conducted: pre-intervention (T1), 14 days following the start of the intervention (T2), and 1 day after the intervention was completed (T3). In total, 30 participants met the inclusion criteria (n = 15 in each group). The improvement in the PUSH at T2 and T3 was 16.8% (CI95% 0.5-33.1) and 25.3% (CI95% 7.6-43.0) greater in the experimental group versus the sham control, respectively. The reduction in the wound area at T2 and T3 was 20.1% (CI95% 5.2-35.0) and 28.6% (CI95% 11.9-45.3) greater in the experimental group versus the control, respectively. Microcurrent therapy improves the healing of pressure ulcers in older adults, both quantitatively and qualitatively.
Collapse
Affiliation(s)
- Juan Avendaño-Coy
- Faculty of Physiotherapy and Nursing of Toledo, University of Castilla-La Mancha, 45071 Toledo, Spain
| | - Noelia M. Martín-Espinosa
- Faculty of Physiotherapy and Nursing of Toledo, University of Castilla-La Mancha, 45071 Toledo, Spain
| | | | - Julio Gómez-Soriano
- Faculty of Physiotherapy and Nursing of Toledo, University of Castilla-La Mancha, 45071 Toledo, Spain
| | | | - Purificación López-Muñoz
- Faculty of Physiotherapy and Nursing of Toledo, University of Castilla-La Mancha, 45071 Toledo, Spain
| |
Collapse
|