1
|
Duan X, Chen Z, Zhan Z, Li L, Lei X, Long Y, Xie X, Chen H. Establishment of new transurethral catheterization methods for male mice. Biol Methods Protoc 2024; 9:bpae005. [PMID: 38414648 PMCID: PMC10898326 DOI: 10.1093/biomethods/bpae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
Transurethral catheterization in mice is multifaceted, serving essential functions such as perfusion and drug delivery, and is critical in the development of various urological animal disease models. The complex anatomy of the male mouse urethra presents significant challenges in transurethral catheterization, leading to a predominance of research focused on female specimens. This bias limits the utilization of male mice in lower urinary tract disease studies. Our research aims to develop new reliable methods for transurethral catheterization in adult male mice, thereby expanding their use in relevant disease research. Experiments were conducted on adult male C57BL/6J mice. Utilizing a PE10 catheter measuring 4.5-5 cm in length, the catheter was inserted into the bladder via the mouse's urethra under anesthesia. The intubation technique entailed regulating the insertion force, ensuring the catheter's lubrication, using a trocar catheter, modifying the catheter's trajectory, and accommodating the curvature of the bladder neck. Post-catheter insertion, ultrasound imaging was employed to confirm the catheter's accurate positioning within the bladder. Subsequent to catheterization, the bladder was perfused using trypan blue. This method was further validated through its successful application in establishing an acute urinary retention (AUR) model, where the mouse bladder was infused with saline to a pressure of 50 or 80 cm H2O, maintained steadily for 30 min. A thorough morphological assessment of the mouse bladder was conducted after the infusion. Our study successfully pioneered methods for transurethral catheterization in male mice. This technique not only facilitates precise transurethral catheterization but also proves applicable to male mouse models for lower urinary tract diseases, such as AUR.
Collapse
Affiliation(s)
- Xi Duan
- The School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou 646000, China
| | - Zhibin Chen
- Department of Urology, Neijiang First People's Hospital, Neijiang 641099, China
| | - Zhean Zhan
- The School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou 646000, China
| | - Langhui Li
- The School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou 646000, China
| | - Xianying Lei
- Department of Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yang Long
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiang Xie
- The School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou 646000, China
| | - Huan Chen
- The School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou 646000, China
- Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
2
|
Anti-inflammatory effects of Abelmoschus manihot (L.) Medik. on LPS-induced cystitis in mice: potential candidate for cystitis treatment based on classic use. Chin J Nat Med 2022; 20:321-331. [DOI: 10.1016/s1875-5364(22)60140-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Indexed: 11/19/2022]
|
3
|
Ruiz-Rosado JDD, Robledo-Avila F, Cortado H, Rangel-Moreno J, Justice SS, Yang C, Spencer JD, Becknell B, Partida-Sanchez S. Neutrophil-Macrophage Imbalance Drives the Development of Renal Scarring during Experimental Pyelonephritis. J Am Soc Nephrol 2021; 32:69-85. [PMID: 33148615 PMCID: PMC7894670 DOI: 10.1681/asn.2020030362] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/13/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND In children, the acute pyelonephritis that can result from urinary tract infections (UTIs), which commonly ascend from the bladder to the kidney, is a growing concern because it poses a risk of renal scarring and irreversible loss of kidney function. To date, the cellular mechanisms underlying acute pyelonephritis-driven renal scarring remain unknown. METHODS We used a preclinical model of uropathogenic Escherichia coli-induced acute pyelonephritis to determine the contribution of neutrophils and monocytes to resolution of the condition and the subsequent development of kidney fibrosis. We used cell-specific monoclonal antibodies to eliminate neutrophils, monocytes, or both. Bacterial ascent and the cell dynamics of phagocytic cells were assessed by biophotonic imaging and flow cytometry, respectively. We used quantitative RT-PCR and histopathologic analyses to evaluate inflammation and renal scarring. RESULTS We found that neutrophils are critical to control bacterial ascent, which is in line with previous studies suggesting a protective role for neutrophils during a UTI, whereas monocyte-derived macrophages orchestrate a strong, but ineffective, inflammatory response against uropathogenic, E. coli-induced, acute pyelonephritis. Experimental neutropenia during acute pyelonephritis resulted in a compensatory increase in the number of monocytes and heightened macrophage-dependent inflammation in the kidney. Exacerbated macrophage-mediated inflammatory responses promoted renal scarring and compromised renal function, as indicated by elevated serum creatinine, BUN, and potassium. CONCLUSIONS These findings reveal a previously unappreciated outcome for neutrophil-macrophage imbalance in promoting host susceptibility to acute pyelonephritis and the development of permanent renal damage. This suggests targeting dysregulated macrophage responses might be a therapeutic tool to prevent renal scarring during acute pyelonephritis.
Collapse
Affiliation(s)
- Juan de Dios Ruiz-Rosado
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Hanna Cortado
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester, Rochester, New York
| | - Sheryl S. Justice
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Ching Yang
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,Department of Veterinary Bioscience, The Ohio State University, Columbus, Ohio
| | - John David Spencer
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,Division of Nephrology, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Brian Becknell
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,Division of Nephrology, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
4
|
The emergence of animal models of chronic pain and logistical and methodological issues concerning their use. J Neural Transm (Vienna) 2019; 127:393-406. [DOI: 10.1007/s00702-019-02103-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022]
|
5
|
Lee S, Carrasco A, Meacham RB, Malykhina AP. Transurethral Instillation Procedure in Adult Male Mouse. J Vis Exp 2017. [PMID: 29155777 DOI: 10.3791/56663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Transurethral instillation can be used to deliver different solutions with active ingredients (e.g., drugs, chemicals, bacteria, and viruses) locally into the urinary bladder to either induce animal models of bladder pathologies or evaluate the effectiveness of intravesical treatments. Most rodent models of lower urinary tract (LUT) pathologies are induced in female mice due to ease of intravesical instillation of the substances via the female urethra. However, due to anatomical differences between the female and male LUT, transurethral instillation in a male mouse has been deemed a very challenging procedure, and it has not been previously described. In this manuscript, we provide a detailed description of how to prepare polyethylene (PE) tubing for subsequent insertion into the urethra of a male mouse. In addition, we discuss the ideal types of PE tubing to be used depending on the desired site of inoculation. Furthermore, we describe point by point how to prepare an animal for a successful transurethral instillation to avoid injury to the urethra and ensure the delivery of the solution to the desired location. The procedure is started by retracting the prepuce and the glans to expose the opening of the urethral meatus. Next, the glans are grasped by blunt non-crushing forceps to stabilize the penis and the PE tubing. The PE tubing is first inserted into the urethral meatus parallel to the animal body, then its angle is adjusted by tilting the catheter to maneuver it to follow the natural curvature of the urethra. This technique can be used to induced murine models of bladder pathologies and/or evaluate the effectiveness of intravesical treatments in male mice.
Collapse
Affiliation(s)
- Sanghee Lee
- Division of Urology, Department of Surgery, University of Colorado School of Medicine
| | | | - Randall B Meacham
- Division of Urology, Department of Surgery, University of Colorado School of Medicine
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Colorado School of Medicine;
| |
Collapse
|
6
|
Host Responses to Urinary Tract Infections and Emerging Therapeutics: Sensation and Pain within the Urinary Tract. Microbiol Spectr 2016; 4. [DOI: 10.1128/microbiolspec.uti-0023-2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
ABSTRACT
Urinary tract infection (UTI) pathogenesis is understood increasingly at the level of the uropathogens and the cellular and molecular mediators of host inflammatory responses. However, little is known about the mediators of symptoms during UTI and what distinguishes symptomatic events from asymptomatic bacteriuria. Here, we review bladder physiology and sensory pathways in the context of an emerging literature from murine models dissecting the host and pathogen factors mediating pain responses during UTI. The bladder urothelium is considered a mediator of sensory responses and appears to play a role in UTI pain responses. Virulence factors of uropathogens induce urothelial damage that could trigger pain due to compromised bladder-barrier function. Instead, bacterial glycolipids are the major determinants of UTI pain independent of urothelial damage, and the O-antigen of lipopolysaccharide modulates pain responses. The extent of pain modulation by O-antigen can have profound effects, from abolishing pain responses to inducing chronic pain that results in central nervous system features reminiscent of neuropathic pain. Although these effects are largely dependent upon Toll-like receptors, pain is independent of inflammation. Surprisingly, some bacteria even possess analgesic properties, suggesting that bacteria exhibit a wide range of pain phenotypes in the bladder. In summary, UTI pain is a complex form of visceral pain that has significant potential to inform our understanding of bacterial pathogenesis and raises the specter of chronic pain resulting from transient infection, as well as novel approaches to treating pain.
Collapse
|
7
|
The sickness response in steers with induced bovine respiratory disease before and after treatment with a non-steroidal anti-inflammatory drug. Appl Anim Behav Sci 2016. [DOI: 10.1016/j.applanim.2016.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Gregory NS, Harris AL, Robinson CR, Dougherty PM, Fuchs PN, Sluka KA. An overview of animal models of pain: disease models and outcome measures. THE JOURNAL OF PAIN 2013; 14:1255-69. [PMID: 24035349 PMCID: PMC3818391 DOI: 10.1016/j.jpain.2013.06.008] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/14/2013] [Accepted: 06/24/2013] [Indexed: 01/12/2023]
Abstract
UNLABELLED Pain is ultimately a perceptual phenomenon. It is built from information gathered by specialized pain receptors in tissue, modified by spinal and supraspinal mechanisms, and integrated into a discrete sensory experience with an emotional valence in the brain. Because of this, studying intact animals allows the multidimensional nature of pain to be examined. A number of animal models have been developed, reflecting observations that pain phenotypes are mediated by distinct mechanisms. Animal models of pain are designed to mimic distinct clinical diseases to better evaluate underlying mechanisms and potential treatments. Outcome measures are designed to measure multiple parts of the pain experience, including reflexive hyperalgesia measures, sensory and affective dimensions of pain, and impact of pain on function and quality of life. In this review, we discuss the common methods used for inducing each of the pain phenotypes related to clinical pain syndromes as well as the main behavioral tests for assessing pain in each model. PERSPECTIVE Understanding animal models and outcome measures in animals will assist in translating data from basic science to the clinic.
Collapse
Affiliation(s)
- Nicholas S Gregory
- Department of Physical Therapy and Rehabilitation Science, College of Medicine, University of Iowa, Iowa City, Iowa; Neuroscience Graduate Program, College of Medicine, University of Iowa, Iowa City, Iowa
| | | | | | | | | | | |
Collapse
|
9
|
Malykhina AP, Lei Q, Erickson CS, Epstein ML, Saban MR, Davis CA, Saban R. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity. BMC PHYSIOLOGY 2012; 12:15. [PMID: 23249422 PMCID: PMC3543727 DOI: 10.1186/1472-6793-12-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/11/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF) modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity.In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) and cholinergic nerves (ChAT) was studied one week after one or two intravesical instillations of the growth factor.To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG) neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. RESULTS In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment) reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation) caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na(+) channels (VGSC) in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. CONCLUSIONS For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a key modulator of neural plasticity in the pelvis and enhanced VEGF content may be associated with visceral hyperalgesia, abdominal discomfort, and/or pelvic pain.
Collapse
Affiliation(s)
- Anna P Malykhina
- Department of Surgery, Division of Urology, University of Pennsylvania School of Medicine, Glenolden, 19036-2307, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Rudick CN, Jiang M, Yaggie RE, Pavlov VI, Done J, Heckman CJ, Whitfield C, Schaeffer AJ, Klumpp DJ. O-antigen modulates infection-induced pain states. PLoS One 2012; 7:e41273. [PMID: 22899994 PMCID: PMC3416823 DOI: 10.1371/journal.pone.0041273] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/19/2012] [Indexed: 01/11/2023] Open
Abstract
The molecular initiators of infection-associated pain are not understood. We recently found that uropathogenic E. coli (UPEC) elicited acute pelvic pain in murine urinary tract infection (UTI). UTI pain was due to E. coli lipopolysaccharide (LPS) and its receptor, TLR4, but pain was not correlated with inflammation. LPS is known to drive inflammation by interactions between the acylated lipid A component and TLR4, but the function of the O-antigen polysaccharide in host responses is unknown. Here, we examined the role of O-antigen in pain using cutaneous hypersensitivity (allodynia) to quantify pelvic pain behavior and using sacral spinal cord excitability to quantify central nervous system manifestations in murine UTI. A UPEC mutant defective for O-antigen biosynthesis induced chronic allodynia that persisted long after clearance of transient infections, but wild type UPEC evoked only acute pain. E. coli strains lacking O-antigen gene clusters had a chronic pain phenotype, and expressing cloned O-antigen gene clusters altered the pain phenotype in a predictable manner. Chronic allodynia was abrogated in TLR4-deficient mice, but inflammatory responses in wild type mice were similar among E. coli strains spanning a wide range of pain phenotypes, suggesting that O-antigen modulates pain independent of inflammation. Spinal cords of mice with chronic allodynia exhibited increased spontaneous firing and compromised short-term depression, consistent with centralized pain. Taken together, these findings suggest that O-antigen functions as a rheostat to modulate LPS-associated pain. These observations have implications for an infectious etiology of chronic pain and evolutionary modification of pathogens to alter host behaviors.
Collapse
Affiliation(s)
- Charles N. Rudick
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Mingchen Jiang
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Ryan E. Yaggie
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Vladimir I. Pavlov
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Joseph Done
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Charles J. Heckman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Christopher Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Anthony J. Schaeffer
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - David J. Klumpp
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abstract
Inflammation of the lower urinary tract occurs frequently in people. The causes remain obscure, with the exception of urinary tract infection. Animal models have proven useful for investigating and assessing mechanisms underlying symptoms associated with lower urinary tract inflammation and options for suppressing these symptoms. This review will discuss various animal models of lower urinary tract inflammation, including feline spontaneous (interstitial) cystitis, neurogenic cystitis, autoimmune cystitis, cystitis induced by intravesical instillation of chemicals or bacterial products (particularly lipopolysaccharide or LPS), and prostatic inflammation initiated by transurethral instillation of bacteria. Animal models will continue to be of significant value in identifying mechanisms resulting in bladder inflammation, but the relevance of some of these models to the causes underlying clinical disease is unclear. This is primarily because of the lack of understanding of causes of these disorders in people. Comparative and translational studies are required if the full potential of findings obtained with animal models to improve prevention and treatment of lower urinary tract inflammation in people is to be realized.
Collapse
Affiliation(s)
- Dale E Bjorling
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | |
Collapse
|
12
|
Rudick CN, Billips BK, Pavlov VI, Yaggie RE, Schaeffer AJ, Klumpp DJ. Host-pathogen interactions mediating pain of urinary tract infection. J Infect Dis 2010; 201:1240-9. [PMID: 20225955 DOI: 10.1086/651275] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Pelvic pain is a major component of the morbidity associated with urinary tract infection (UTI), yet the molecular mechanisms underlying UTI-induced pain remain unknown. UTI pain mechanisms probably contrast with the clinical condition of asymptomatic bacteriuria (ASB), characterized by significant bacterial loads without lack symptoms. METHODS A murine UTI model was used to compare pelvic pain behavior elicited by infection with uropathogenic Escherichia coli strain NU14 and ASB strain 83972. RESULTS NU14-infected mice exhibited pelvic pain, whereas mice infected with 83972 did not exhibit pain, similar to patients infected with 83972. NU14-induced pain was not dependent on mast cells, not correlated with bacterial colonization or urinary neutrophils. UTI pain was not influenced by expression of type 1 pili, the bacterial adhesive appendages that induce urothelial apoptosis. However, purified NU14 lipopolysaccharide (LPS) induced Toll-like receptor 4 (TLR4)-dependent pain, whereas 83972 LPS induced no pain. Indeed, 83972 LPS attenuated the pain of NU14 infection, suggesting therapeutic potential. CONCLUSIONS These data suggest a novel mechanism of infection-associated pain that is dependent on TLR4 yet independent of inflammation. Clinically, these findings also provide the rational for probiotic therapies that would minimize the symptoms of infection without reliance on empirical therapies that contribute to antimicrobial resistance.
Collapse
Affiliation(s)
- Charles N Rudick
- Department of Urology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
13
|
Rittner HL, Hackel D, Voigt P, Mousa S, Stolz A, Labuz D, Schäfer M, Schaefer M, Stein C, Brack A. Mycobacteria attenuate nociceptive responses by formyl peptide receptor triggered opioid peptide release from neutrophils. PLoS Pathog 2009; 5:e1000362. [PMID: 19343210 PMCID: PMC2657213 DOI: 10.1371/journal.ppat.1000362] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 03/02/2009] [Indexed: 12/27/2022] Open
Abstract
In inflammation, pain is regulated by a balance of pro- and analgesic mediators. Analgesic mediators include opioid peptides which are secreted by neutrophils at the site of inflammation, leading to activation of opioid receptors on peripheral sensory neurons. In humans, local opioids and opioid peptides significantly downregulate postoperative as well as arthritic pain. In rats, inflammatory pain is induced by intraplantar injection of heat inactivated Mycobacterium butyricum, a component of complete Freund's adjuvant. We hypothesized that mycobacterially derived formyl peptide receptor (FPR) and/or toll like receptor (TLR) agonists could activate neutrophils, leading to opioid peptide release and inhibition of inflammatory pain. In complete Freund's adjuvant-induced inflammation, thermal and mechanical nociceptive thresholds of the paw were quantified (Hargreaves and Randall-Selitto methods, respectively). Withdrawal time to heat was decreased following systemic neutrophil depletion as well as local injection of opioid receptor antagonists or anti-opioid peptide (i.e. Met-enkephalin, beta-endorphin) antibodies indicating an increase in pain. In vitro, opioid peptide release from human and rat neutrophils was measured by radioimmunoassay. Met-enkephalin release was triggered by Mycobacterium butyricum and formyl peptides but not by TLR-2 or TLR-4 agonists. Mycobacterium butyricum induced a rise in intracellular calcium as determined by FURA loading and calcium imaging. Opioid peptide release was blocked by intracellular calcium chelation as well as phosphoinositol-3-kinase inhibition. The FPR antagonists Boc-FLFLF and cyclosporine H reduced opioid peptide release in vitro and increased inflammatory pain in vivo while TLR 2/4 did not appear to be involved. In summary, mycobacteria activate FPR on neutrophils, resulting in tonic secretion of opioid peptides from neutrophils and in a decrease in inflammatory pain. Future therapeutic strategies may aim at selective FPR agonists to boost endogenous analgesia.
Collapse
Affiliation(s)
- Heike L. Rittner
- Klinik für Anaesthesiologie mit Schwerpunkt operative Intensivmedizin, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Klinik und Poliklinik für Anaesthesiologie, University of Würzburg, Würzburg, Germany
| | - Dagmar Hackel
- Klinik für Anaesthesiologie mit Schwerpunkt operative Intensivmedizin, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Klinik und Poliklinik für Anaesthesiologie, University of Würzburg, Würzburg, Germany
| | - Philipp Voigt
- Bereich Molekulare Pharmakologie und Zellbiologie, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Shaaban Mousa
- Klinik für Anaesthesiologie mit Schwerpunkt operative Intensivmedizin, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Andrea Stolz
- Klinik für Anaesthesiologie mit Schwerpunkt operative Intensivmedizin, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Dominika Labuz
- Klinik für Anaesthesiologie mit Schwerpunkt operative Intensivmedizin, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Michael Schäfer
- Klinik für Anaesthesiologie mit Schwerpunkt operative Intensivmedizin, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Michael Schaefer
- Bereich Molekulare Pharmakologie und Zellbiologie, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Christoph Stein
- Klinik für Anaesthesiologie mit Schwerpunkt operative Intensivmedizin, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Alexander Brack
- Klinik für Anaesthesiologie mit Schwerpunkt operative Intensivmedizin, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Klinik und Poliklinik für Anaesthesiologie, University of Würzburg, Würzburg, Germany
- * E-mail: or
| |
Collapse
|
14
|
Wang ZY, Wang P, Merriam FV, Bjorling DE. Lack of TRPV1 inhibits cystitis-induced increased mechanical sensitivity in mice. Pain 2008; 139:158-167. [DOI: 10.1016/j.pain.2008.03.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 03/13/2008] [Accepted: 03/18/2008] [Indexed: 10/22/2022]
|