1
|
Wang X, Shi C, Hou X, Song S, Li C, Cao W, Chen W, Li L. Application of biomaterials and tissue engineering in bladder regeneration. J Biomater Appl 2022; 36:1484-1502. [DOI: 10.1177/08853282211048574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The primary functions of the bladder are storing urine under low and stable pressure and micturition. Various forms of trauma, tumors, and iatrogenic injuries can cause the loss of or reduce bladder function or capacity. If such damage is not treated in time, it will eventually lead to kidney damage and can even be life-threatening in severe cases. The emergence of tissue engineering technology has led to the development of more possibilities for bladder repair and reconstruction, in which the selection of scaffolds is crucial. In recent years, a growing number of tissue-engineered bladder scaffolds have been constructed. Therefore, this paper will discuss the development of tissue-engineered bladder scaffolds and will further analyze the limitations of and challenges encountered in bladder reconstruction.
Collapse
Affiliation(s)
- Xiaoya Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xianglin Hou
- Institute of genetics and developmental biology, Chinese Academy of Sciences, Beijing, China
| | - Siqi Song
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Chenglin Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Wenxuan Cao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Wei Chen
- Department of Urology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ling Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
2
|
de Vlaming A, Mathews KG, Hash JA, Keenihan EK, Sommer S, Borst L, Vaden SL. Creation of a Continent Urinary Bladder Reservoir Vascularized by Omentum as a Possible Surgical Option for Canine Trigonal/Urethral Urothelial Carcinoma. J INVEST SURG 2020; 35:481-495. [PMID: 33371755 DOI: 10.1080/08941939.2020.1864797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Surgical procedures that maintain continence with minimal complication following resection of trigono-urethral urothelial carcinoma (UC) are limited in canines; therefore, palliative options are often pursued. A feasible tumor resection option may improve disease control and survival. The study's objective was to evaluate a continent urine reservoir created from the urinary bladder body and vascularized solely by omentum. We hypothesized that a viable urine reservoir could be created, and staged omentalization would provide improved vascularity. Nine normal female Beagles were randomized to one of three groups. Group A urinary bladders were transected cranial to the ureteral papillae to create a closed bladder vesicle which was concomitantly omentalized. Group B underwent omentalization two weeks prior to vesicle creation. Based on Group A and B results, Group C underwent neoureterocystostomy and omentalization followed by neoreservoir formation and tube cystostomy 2 weeks later. Serial ultrasounds and histopathology confirmed adequate omental neovascularization in Groups B and C with continent Group C neoreservoirs maintained for 2 months. Some pylectasia and ureteral dilation was documented in all Group C dogs at variable timepoints. Progressive hydroureteronephrosis developed in 2/6 kidneys. Transient azotemia was noted in only 1 Group C dog, although all developed treatable urinary tract infections. The sample size is limited, and the efficacy of this technique in providing disease control for UC is unknown. However, this novel option could allow for primary UC resection while providing continence and limiting complications. Postoperative local or systemic adjuvant therapy, ultrasonographic neoreservoir monitoring, and BRAF analysis would be indicated.
Collapse
Affiliation(s)
- Annemarieke de Vlaming
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Kyle G Mathews
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Jonathan A Hash
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Erin K Keenihan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Samantha Sommer
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Luke Borst
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Shelly L Vaden
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Langer S, Radtke C, Györi E, Springer A, Metzelder ML. Bladder augmentation in children: current problems and experimental strategies for reconstruction. Wien Med Wochenschr 2018; 169:61-70. [PMID: 30084093 PMCID: PMC6394595 DOI: 10.1007/s10354-018-0645-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/21/2018] [Indexed: 12/31/2022]
Abstract
Bladder augmentation is a demanding surgical procedure and exclusively offered for selected children and has only a small spectrum of indications. Paediatric bladder voiding dysfunction occurs either on a basis of neurological dysfunction caused by congenital neural tube defects or on a basis of rare congenital anatomic malformations. Neurogenic bladder dysfunction often responds well to a combination of specific drugs and/or intermittent self-catheterization. However, selected patients with spinal dysraphism and children with congenital malformations like bladder exstrophy and resulting small bladder capacity might require bladder augmentation. Ileocystoplasty is the preferred method of bladder augmentation to date. Because of the substantial long-and short-term morbidity of augmentation cystoplasty, recent studies have tried to incorporate new techniques and technologies, such as the use of biomaterials to overcome or reduce the adverse effects. In this regard, homografts and allografts have been implemented in bladder augmentation with varying results, but recent studies have shown promising data in terms of proliferation of urothelium and muscle cells by using biological silk grafts.
Collapse
Affiliation(s)
- Sophie Langer
- General Hospital Vienna, Clinical Department of Paediatric Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christine Radtke
- General Hospital Vienna, Clinical Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Eva Györi
- General Hospital Vienna, Clinical Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Alexander Springer
- General Hospital Vienna, Clinical Department of Paediatric Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Martin L Metzelder
- General Hospital Vienna, Clinical Department of Paediatric Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
4
|
Zhou L, Xia J, Wang P, Jia R, Zheng J, Yao X, Chen Y, Dai Y, Yang B. Autologous Smooth Muscle Progenitor Cells Enhance Regeneration of Tissue-Engineered Bladder. Tissue Eng Part A 2018; 24:1066-1081. [PMID: 29327677 DOI: 10.1089/ten.tea.2017.0376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Liuhua Zhou
- Department of Urology and Andrology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jiadong Xia
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengji Wang
- Department of Urology and Andrology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
- Department of Urology, Longkou People Hospital, Yantai, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junhua Zheng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yun Chen
- Department of Urology and Andrology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yutian Dai
- Department of Urology and Andrology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Bin Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Chen BS, Zhang SL, Geng H, Pan J, Chen F. Ex vivo Functional Evaluation of Isolated Strips in BAMG Tissue-Engineered Bladders. Int J Artif Organs 2018; 32:159-65. [DOI: 10.1177/039139880903200306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although gastrointestinal segments have been widely used for bladder augmentation, they are still not considered ideal sources due to the possibility of complications. In this study, with the aim of reducing complications, we performed bladder augmentation in pigs using bladder acellular matrix grafts (BAMG) as a scaffold. Three months after surgery, the BAMG tissue-engineered bladders revealed bladder reconstruction that morphologically resembled that of the normal bladder. Functional experiments were performed to evaluate the contractile characteristics of isolated strips from both normal and BAMG tissue-engineered bladders 3 months after augmentation. No significant differences between these two groups were found in spontaneous contraction and contraction after electric stimulation; in the relaxing effect of epinephrine on potassium chloride-induced twitch height; in the contracting effects of acetylcholin; or in the antagonistic effect of atropine on acetylcholine-induced contraction. These results demonstrate that not only can BAMG tissue-engineered bladders be histologically reconstructed, they also possess electrophysiological and pharmacological characteristics similar to normal bladders. This further confirms BAMG as an ideal scaffold for bladder augmentation.
Collapse
Affiliation(s)
- Baisong S. Chen
- Department of Urology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai
| | - Shengli L. Zhang
- Department of Urology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai
| | - Hongquan Geng
- Department of Urology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai
| | - Jun Pan
- Department of Urology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai
| | - Fang Chen
- Department of Urology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai - China
| |
Collapse
|
6
|
Wang Q, Xiao DD, Yan H, Zhao Y, Fu S, Zhou J, Wang Z, Zhou Z, Zhang M, Lu MJ. The morphological regeneration and functional restoration of bladder defects by a novel scaffold and adipose-derived stem cells in a rat augmentation model. Stem Cell Res Ther 2017. [PMID: 28646909 PMCID: PMC5482942 DOI: 10.1186/s13287-017-0597-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Due to the multilineage differentiation ability and paracrine role of adipose-derived stem cells (ASCs) for bladder defect repair, various scaffolds have been applied in combination with ASCs to promote bladder regeneration and restore bladder function. However, the low survival rate of ASCs and the difficulty of promoting bladder functional recovery are still unsolved. To explore these problems, we investigated the feasibility of a novel scaffold seeded with ASCs in a rat model of bladder augmentation. Methods A novel autologous myofibroblast (AM)-silk fibroin (SF) scaffold was harvested after subcutaneously prefabricating the bladder acellular matrix grafts (BAMG) and SF by removing the BAMG. The AM-SF scaffolds were then seeded with ASCs (AM-SF-ASCs). Fifty percent supratrigonal cystectomies were performed followed by augmenting the cystectomized defects with AM-SF scaffolds or AM-SF-ASCs. The histological and functional assessments of bladders were performed 2, 4, and 12 weeks after surgery while the ASCs were tracked in vivo. Results For bladder tissue regeneration, immunofluorescence analysis revealed that AM-SF-ASCs (the experimental group) promoted better morphological regeneration of the urothelium, vessels, bladder smooth muscle, and nerve than AM-SF scaffolds (the control group). Regarding functional restoration, the AM-SF-ASC group exhibited higher bladder compliance and relatively normal micturition pattern compared to the AM-SF group. In addition, a certain number of surviving ASCs could be found in vivo 12 weeks after implantation, and some of them had differentiated into smooth muscle cells. Conclusions The AM-SF scaffolds with ASCs could rapidly promote bladder morphological regeneration and improved bladder urinary function. In addition, the bag-shaped structure of the AM-SF scaffold can improve the survival of ASCs for at least 12 weeks. This strategy of AM-SF-ASCs has a potential to repair large-scale bladder defects in the clinic in the future.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Urology and Andrology, Shanghai Renji Hospital, Shanghai Jiao Tong University, School of Medicine, No. 145 Middle Shandong Road, Shanghai, 200001, People's Republic of China
| | - Dong-Dong Xiao
- Department of Urology and Andrology, Shanghai Renji Hospital, Shanghai Jiao Tong University, School of Medicine, No. 145 Middle Shandong Road, Shanghai, 200001, People's Republic of China
| | - Hao Yan
- Department of Urology and Andrology, Shanghai Renji Hospital, Shanghai Jiao Tong University, School of Medicine, No. 145 Middle Shandong Road, Shanghai, 200001, People's Republic of China
| | - Yang Zhao
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, People's Republic of China
| | - Shi Fu
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, People's Republic of China
| | - Juan Zhou
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, People's Republic of China
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, People's Republic of China
| | - Zhe Zhou
- Department of Urology and Andrology, Shanghai Renji Hospital, Shanghai Jiao Tong University, School of Medicine, No. 145 Middle Shandong Road, Shanghai, 200001, People's Republic of China
| | - Ming Zhang
- Department of Urology and Andrology, Shanghai Renji Hospital, Shanghai Jiao Tong University, School of Medicine, No. 145 Middle Shandong Road, Shanghai, 200001, People's Republic of China.
| | - Mu-Jun Lu
- Department of Urology and Andrology, Shanghai Renji Hospital, Shanghai Jiao Tong University, School of Medicine, No. 145 Middle Shandong Road, Shanghai, 200001, People's Republic of China.
| |
Collapse
|
7
|
Zhao Y, He Y, Guo JH, Wu JS, Zhou Z, Zhang M, Li W, Zhou J, Xiao DD, Wang Z, Sun K, Zhu YJ, Lu MJ. Time-dependent bladder tissue regeneration using bilayer bladder acellular matrix graft-silk fibroin scaffolds in a rat bladder augmentation model. Acta Biomater 2015; 23:91-102. [PMID: 26049152 DOI: 10.1016/j.actbio.2015.05.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 12/11/2022]
Abstract
With advances in tissue engineering, various synthetic and natural biomaterials have been widely used in tissue regeneration of the urinary bladder in rat models. However, reconstructive procedures remain insufficient due to the lack of appropriate scaffolding, which should provide a waterproof barrier function and support the needs of various cell types. To address these problems, we have developed a bilayer scaffold comprising a porous network (silk fibroin [SF]) and an underlying natural acellular matrix (bladder acellular matrix graft [BAMG]) and evaluated its feasibility and potential for bladder regeneration in a rat bladder augmentation model. Histological (hematoxylin and eosin and Masson's trichrome staining) and immunohistochemical analyses demonstrated that the bilayer BAMG-SF scaffold promoted smooth muscle, blood vessel, and nerve regeneration in a time-dependent manner. At 12weeks after implantation, bladders reconstructed with the BAMG-SF matrix displayed superior structural and functional properties without significant local tissue responses or systemic toxicity. These results demonstrated that the bilayer BAMG-SF scaffold may be a promising scaffold with good biocompatibility for bladder regeneration in the rat bladder augmentation model.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yi He
- Department of Urology, Jiaxing First Hospital, Jiaxing, Zhejiang Province 314001, China
| | - Jian-Hua Guo
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jia-Sheng Wu
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhe Zhou
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Ming Zhang
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Wei Li
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juan Zhou
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Dong-Dong Xiao
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China.
| | - Kang Sun
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying-Jian Zhu
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China.
| | - Mu-Jun Lu
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China.
| |
Collapse
|
8
|
Liao L. Evaluation and Management of Neurogenic Bladder: What Is New in China? Int J Mol Sci 2015; 16:18580-600. [PMID: 26266405 PMCID: PMC4581261 DOI: 10.3390/ijms160818580] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/23/2015] [Accepted: 07/23/2015] [Indexed: 11/16/2022] Open
Abstract
Neurogenic bladder (NB) or neurogenic lower urinary tract dysfunction (NLUTD), a dysfunction of the urinary bladder and urethra due to disease of the central nervous system or peripheral nerves, is a major global medical and social problem. Numerous nervous system abnormalities, such as: stroke, Alzheimer's and Parkinson's diseases, traumatic spinal cord injury, spinal cord tumors, congenital spina bifida, and diabetes, can cause NB/NLUTD. There are two major types of bladder control problems associated with NB/NLUTD: the bladder becomes either overactive or underactive depending on the nature, level, and extent of nerve damage. This review specifically focuses on the diagnosis and management of NB/NLUTD in China as well as on recent efforts to treat this disease.
Collapse
Affiliation(s)
- Limin Liao
- Department of Urology, China Rehabilitation Research Center, Beijing 100068, China.
- Department of Urology, Capital Medical University, Beijing 100069, China.
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China.
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China .
| |
Collapse
|
9
|
Abstract
Modern medicine faces a growing crisis as demand for organ transplantations continues to far outstrip supply. By stimulating the body’s own repair mechanisms, regenerative medicine aims to reduce demand for organs, while the closely related field of tissue engineering promises to deliver “off-the-self” organs grown from patients’ own stem cells to improve supply. To deliver on these promises, we must have reliable means of generating complex tissues. Thus far, the majority of successful tissue engineering approaches have relied on macroporous scaffolds to provide cells with both mechanical support and differentiative cues. In order to engineer complex tissues, greater attention must be paid to nanoscale cues present in a cell’s microenvironment. As the extracellular matrix is capable of driving complexity during development, it must be understood and reproduced in order to recapitulate complexity in engineered tissues. This review will summarize current progress in engineering complex tissue through the integration of nanocomposites and biomimetic scaffolds.
Collapse
Affiliation(s)
- John W Cassidy
- Centre for Cell Engineering, University of Glasgow, Glasgow, UK. ; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Sloff M, Simaioforidis V, de Vries R, Oosterwijk E, Feitz W. Tissue Engineering of the Bladder—Reality or Myth? A Systematic Review. J Urol 2014; 192:1035-42. [DOI: 10.1016/j.juro.2014.03.116] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Marije Sloff
- Department of Urology, Radboud Institute for Molecular Life Sciences and Systematic Review Center for Laboratory Animal Experimentation, Central Animal Facility (RdeV), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vasileios Simaioforidis
- Department of Urology, Radboud Institute for Molecular Life Sciences and Systematic Review Center for Laboratory Animal Experimentation, Central Animal Facility (RdeV), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob de Vries
- Department of Urology, Radboud Institute for Molecular Life Sciences and Systematic Review Center for Laboratory Animal Experimentation, Central Animal Facility (RdeV), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Egbert Oosterwijk
- Department of Urology, Radboud Institute for Molecular Life Sciences and Systematic Review Center for Laboratory Animal Experimentation, Central Animal Facility (RdeV), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wout Feitz
- Department of Urology, Radboud Institute for Molecular Life Sciences and Systematic Review Center for Laboratory Animal Experimentation, Central Animal Facility (RdeV), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Domingos ALA, Garcia SB, Bessa Junior JD, Cassini MF, Molina CAF, Tucci Junior S. Expression of VEGF and collagen using a latex biomembrane as bladder replacement in rabbits. Int Braz J Urol 2013; 38:536-43. [PMID: 22951164 DOI: 10.1590/s1677-55382012000400014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2012] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To investigate the VEGF expression and collagen deposition using a latex biomembrane as bladder replacement in rabbits. MATERIALS AND METHODS After partial cystectomy, a patch of a non-vulcanized latex biomembrane (2 x 2 cm) was sewn to the bladder of rabbits with 5/0 monofilament polydioxanone sulfate sutures in a watertight manner. Groups of 5 animals were killed at 15, 45 and 90 days after surgery and the bladder was removed. Sections of 5µm were cut and stained with picrosirius-red in order to estimate the amount of extracellular matrix in the graft. To confirm the presence of VEGF in tissues, protein expression was determined by immunohistochemistry. RESULTS No death, urinary leakage or graft extrusion occurred in any group. All bladders showed a spherical shape. A progressive reduction in the amount of collagen occurred in the graft area and was negatively and linearly correlated with time (p < 0.001). VEGF expression was higher in grafted areas when compared to controls at 15 and 45 days after surgery and decreased with time (p < 0.001). CONCLUSION The latex biomembrane as a matrix for partial bladder replacement in rabbits promotes temporary collagen deposition and stimulates the angiogenic process.
Collapse
Affiliation(s)
- André Luís Alonso Domingos
- Department of Surgery, Division of Urology, Ribeirão Preto Medical School - University of Sao Paulo Ribeirão Preto, SP and Department of Experimental Surgery, Anhanguera-Uniderp University, Campo Grande, MS, Brazil
| | | | | | | | | | | |
Collapse
|
12
|
Rossetto VJV, da Mota LSLS, Rocha NS, Miot HA, Grandi F, Brandão CVS. Grafts of porcine small intestinal submucosa seeded with cultured homologous smooth muscle cells for bladder repair in dogs. Acta Vet Scand 2013; 55:39. [PMID: 23651843 PMCID: PMC3663814 DOI: 10.1186/1751-0147-55-39] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 04/25/2013] [Indexed: 11/15/2022] Open
Abstract
Background Due to numerous complications associated to gastrointestinal augmented cystoplasty, this study aimed to analyze the anatomic repair of the bladder of 10 female dogs using grafts of porcine small intestinal submucosa (SIS) seeded with cultured homologous smooth muscle cells, and compare them with the acellular SIS grafts. Results We assessed the possible side effects and complications of each type of graft by clinical examination, abdominal ultrasound and laboratory findings. Anatomic repair of neoformed bladder was assessed by histological staining for H/E and Masson's Trichrome, analyzed with a Nikon Photomicroscope connected to the system of image analysis Image J. Conclusions We propose that SIS associated to homologous smooth cells can improve the quality of tissue repair, and consequently decrease the potential complications inherent to acellular SIS.
Collapse
|
13
|
Zhang Y, Atala A. Urothelial cell culture: stratified urothelial sheet and three-dimensional growth of urothelial structure. Methods Mol Biol 2013; 945:383-99. [PMID: 23097119 DOI: 10.1007/978-1-62703-125-7_23] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Urothelial cells line the urinary tract, including the renal pelvis, ureters, bladder, superior urethra, and the central ducts of the prostate. They are highly specialized epithelial cell types possessing unique features, imparting important functional roles in the urinary system. They act as a permeability barrier and protect underlying muscle tissues from the caustic effects of urine while also expanding with bladder filling to adjust urine pressures. The multilayered urothelium is typically structured with differentiated, mature surface cells and less mature basal cells. The basal cell layer contains tissue-specific stem cells able to self-renew for the lifetime of the mammal and also produces a pool of maturing cells for tissue homeostasis. Maintaining regenerative basal cells in a culture facilitates urothelial cell growth in vitro. Additionally, epithelial-mesenchymal communication, epithelial-matrix interactions, and cytokines/growth factors are required to maintain the normal structure and function of mature urothelial cells in vitro and to induce stem cell differentiation into urothelial cells. These cultures are useful to study the biology and physiology of the urinary tract, particularly for the development of cell-based tissue engineering strategies in urology. This chapter describes methods for the isolation of urothelial cells and their maintenance in monolayer culture, and methods for the production of multilayer urothelial cell sheets and three-dimensional cocultures of urothelial and mesenchymal cells.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Urology, Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
14
|
Zhou L, Yang B, Sun C, Qiu X, Sun Z, Chen Y, Zhang Y, Dai Y. Coadministration of platelet-derived growth factor-BB and vascular endothelial growth factor with bladder acellular matrix enhances smooth muscle regeneration and vascularization for bladder augmentation in a rabbit model. Tissue Eng Part A 2012; 19:264-76. [PMID: 22894544 DOI: 10.1089/ten.tea.2011.0609] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tissue-engineering techniques have brought a great hope for bladder repair and reconstruction. The crucial requirements of a tissue-engineered bladder are bladder smooth muscle regeneration and vascularization. In this study, partial rabbit bladder (4×5 cm) was removed and replaced with a porcine bladder acellular matrix (BAM) that was equal in size. BAM was incorporated with platelet-derived growth factor-BB (PDGF-BB) and vascular endothelial growth factor (VEGF) in the experimental group while with no bioactive factors in the control group. The bladder tissue strip contractility in the experimental rabbits was better than that in the control ones postoperation. Histological evaluation revealed that smooth muscle regeneration and vascularization in the experimental group were significantly improved compared with those in the control group (p<0.05), while multilayered urothelium was formed in both groups. Muscle strip contractility of neobladder in the experimental group exhibited significantly better than that in the control (p<0.05) assessed with electrical field stimulation and carbachol interference. The activity of matrix metalloproteinase-2 (MMP-2) and MMP-9 in the native bladder tissue around tissue-engineered neobladder in the experimental group was significantly higher than that in the control (p<0.05). This work suggests that smooth muscle regeneration and vascularization in tissue-engineered neobladder and recovery of bladder function could be enhanced by PDGF-BB and VEGF incorporated within BAM, which promoted the upregulation of the activity of MMP-2 and MMP-9 of native bladder tissue around the tissue-engineered neobladder.
Collapse
Affiliation(s)
- Liuhua Zhou
- Department of Urology, Nanjing University School of Medicine, Affiliated Drum Tower Hospital, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Regenerative medicine strategies for treating neurogenic bladder. Int Neurourol J 2011; 15:109-19. [PMID: 22087419 PMCID: PMC3212584 DOI: 10.5213/inj.2011.15.3.109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 09/22/2011] [Indexed: 02/02/2023] Open
Abstract
Neurogenic bladder is a general term encompassing various neurologic dysfunctions of the bladder and the external urethral sphincter. These can be caused by damage or disease. Therapeutic management options can be conservative, minimally invasive, or surgical. The current standard for surgical management is bladder augmentation using intestinal segments. However, because intestinal tissue possesses different functional characteristics than bladder tissue, numerous complications can ensue, including excess mucus production, urinary stone formation, and malignancy. As a result, investigators have sought after alternative solutions. Tissue engineering is a scientific field that uses combinations of cells and biomaterials to encourage regeneration of new, healthy tissue and offers an alternative approach for the replacement of lost or deficient organs, including the bladder. Promising results using tissue-engineered bladder have already been obtained in children with neurogenic bladder caused by myelomeningocele. Human clinical trials, governed by the Food and Drug Administration, are ongoing in the United States in both children and adults to further evaluate the safety and efficacy of this technology. This review will introduce the principles of tissue engineering and discuss how it can be used to treat refractory cases of neurogenic bladder.
Collapse
|
16
|
Dapena L, Dapena I, Regadera J, Gaspar MJ, González-Peramato P. Histerocystoplasty: a novel surgical procedure in the rat. J Surg Res 2011; 175:157-62. [PMID: 21529834 DOI: 10.1016/j.jss.2011.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/27/2011] [Accepted: 03/02/2011] [Indexed: 11/28/2022]
Abstract
BACKGROUND Enterocystoplasties are associated to complications. To avoid them, different types of tissue templates have been used to augment the bladder and induce native bladder regeneration. MATERIALS AND METHODS A novel surgical technique for bladder reconstruction using autologous uterine tissue was evaluated in a rat model. Forty-two female Wistar rats were randomly allocated into three groups: sham-operation hysterocystorrhaphy (n = 12), hysterocystoplasty (n = 18), and control (n = 12). Two weeks after surgery, ultrasound examination of the bladder was performed. At 2, 4, or 6 mo after surgery, the rats were anesthetized and blood and urine samples were taken. They were then euthanized and post-mortem and histologic examination were performed. Ultrasound examination, analytical parameters and weight control, as well as gross and histologic examination were performed in all the operated animals. The statistical analysis was performed using Kruskal-Wallis and the extension of Fisher's exact tests. Significance was set at 5% (P < 0.05). RESULTS Serum chemistry, blood count and peripheral blood smears, electrolytes, and urinary parameters were all within the normal range for the rat. Histologic sections of the surgically augmented zone between the bladder and uterine horn demonstrated urothelial epithelization, providing adequate coverage of the transition area in 72.22% of the rats that underwent hysterocystoplasty. CONCLUSIONS The hysterocystoplasty was technically viable in all the cases and proved to be an easy and safe surgical model for bladder reconstruction. All animals were healthy after surgery and all systemic parameters analyzed were within normal physiologic range for the rat.
Collapse
Affiliation(s)
- Lidia Dapena
- Department of Biomedicine, University of Leon, Leon, Spain.
| | | | | | | | | |
Collapse
|
17
|
Abstract
There are a number of conditions of the bladder that can lead to loss of function. Many of these require reconstructive procedures. However, current techniques may lead to a number of complications. Replacement of bladder tissues with functionally equivalent ones created in the laboratory could improve the outcome of reconstructive surgery. A review of the literature was conducted using PubMed to identify studies that provide evidence that tissue engineering techniques may be useful in the development of alternatives to current methods of bladder reconstruction. A number of animal studies and several clinical experiences show that it is possible to reconstruct the bladder using tissues and neo-organs produced in the laboratory. Materials that could be used to create functionally equivalent urologic tissues in the laboratory, especially non-autologous cells that have the potential to reject have many technical limitations. Current research suggests that the use of biomaterial-based, bladder-shaped scaffolds seeded with autologous urothelial and smooth muscle cells is currently the best option for bladder tissue engineering. Further research to develop novel biomaterials and cell sources, as well as information gained from developmental biology, signal transduction studies and studies of the wound healing response would be beneficial.
Collapse
Affiliation(s)
- Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
18
|
Drewa T, Chlosta P, Czajkowski R. Will tissue-engineered urinary bladders change indications for a laparoscopic cystectomy? Surg Innov 2010; 17:295-9. [PMID: 20656759 DOI: 10.1177/1553350610375092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Radical open cystectomy is a treatment of choice for muscle invasive urinary bladder cancer. Laparoscopic radical cystectomy (LapRC) is surgically advanced and is an extremely difficult technique but presents many advantages. Urinary diversion (conduit, pouch or neobladder) when performed during laparoscopy necessitates a conversion to open procedure. Urinary diversion using an autologous bowel is associated with longer operative times and complications. The authors have analyzed the LapRC procedure and its 2 main parts--that is, bladder resection and urinary diversion. The emphasis was on the operative time and complications related to the urinary diversion procedure. A urinary diversion created in vitro could make the LapRC totally intracorporeal, and it could be completed within an acceptable time. Tissue engineering techniques used for urinary diversion after cystectomy shorten the operative time and help avoid serious complications related to bowel surgery. LapRC with tissue-engineered urinary diversion could become a management of choice for muscle invasive bladder cancer.
Collapse
Affiliation(s)
- Tomasz Drewa
- Nicolaus Copernicus University, Bydgoszcz, Poland, Institute of Oncology, Bydgoszcz, Poland.
| | | | | |
Collapse
|
19
|
Células madre y medicina regenerativa en urología, 2.a parte: urotelio, vejiga, uretra y próstata. Actas Urol Esp 2010. [DOI: 10.1016/j.acuro.2010.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Morsi GAM. Tissue engineering in vesical reconstruction. AFRICAN JOURNAL OF UROLOGY 2010. [DOI: 10.1007/s12301-010-0001-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
21
|
|
22
|
|
23
|
|