1
|
Liang CC, Shaw SW, Chen TC, Lin YH, Huang YH, Lee TH. Local Injection of Stem Cells Can Be a Potential Strategy to Improve Bladder Dysfunction after Outlet Obstruction in Rats. Int J Mol Sci 2024; 25:8310. [PMID: 39125879 PMCID: PMC11313184 DOI: 10.3390/ijms25158310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
This study investigates whether hAFSCs can improve bladder function in partial bladder outlet obstruction (pBOO) rats by targeting specific cellular pathways. Thirty-six female rats were divided into sham and pBOO groups with and without hAFSCs single injection into the bladder wall. Cystometry, inflammation/hypoxia, collagen/fibrosis/gap junction proteins, and smooth muscle myosin/muscarinic receptors were examined at 2 and 6 weeks after pBOO or sham operation. In pBOO bladders, significant increases in peak voiding pressure and residual volume stimulated a significant upregulation of inflammatory and hypoxic factors, TGF-β1 and Smad2/3. Collagen deposition proteins, collagen 1 and 3, were significantly increased, but bladder fibrosis markers, caveolin 1 and 3, were significantly decreased. Gap junction intercellular communication protein, connexin 43, was significantly increased, but the number of caveolae was significantly decreased. Markers for the smooth muscle phenotype, myosin heavy chain 11 and guanylate-dependent protein kinase, as well as M2 muscarinic receptors, were significantly increased in cultured detrusor cells. However, hAFSCs treatment could significantly ameliorate bladder dysfunction by inactivating the TGFβ-Smad signaling pathway, reducing collagen deposition, disrupting gap junctional intercellular communication, and modifying the expressions of smooth muscle myosin and caveolae/caveolin proteins. The results support the potential value of hAFSCs-based treatment of bladder dysfunction in BOO patients.
Collapse
Affiliation(s)
- Ching-Chung Liang
- Female Urology Section, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 333, Taiwan; (C.-C.L.); (Y.-H.L.); (Y.-H.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (S.W.S.); (T.-C.C.)
| | - Steven W. Shaw
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (S.W.S.); (T.-C.C.)
- Division of Obstetrics, Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Prenatal Cell and Gene Therapy Group, Institute for Women’s Health, University College London, London WC1E 6BT, UK
| | - Tse-Ching Chen
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (S.W.S.); (T.-C.C.)
- Department of Anatomical Pathology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 333, Taiwan
| | - Yi-Hao Lin
- Female Urology Section, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 333, Taiwan; (C.-C.L.); (Y.-H.L.); (Y.-H.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (S.W.S.); (T.-C.C.)
| | - Yung-Hsin Huang
- Female Urology Section, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 333, Taiwan; (C.-C.L.); (Y.-H.L.); (Y.-H.H.)
| | - Tsong-Hai Lee
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (S.W.S.); (T.-C.C.)
- Stroke Center and Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 333, Taiwan
| |
Collapse
|
2
|
Kim JH, Yu SH, Kim SO. Decreased urothelial expression of caveolin 1 and 2 in aging rats showing detrusor overactivity: Potential association with aging bladder. Investig Clin Urol 2021; 62:690-696. [PMID: 34729968 PMCID: PMC8566782 DOI: 10.4111/icu.20210284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/29/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate the effect of aging on bladder function and caveolin protein expression in rat urothelium. MATERIALS AND METHODS Female Sprague-Dawley rats were divided into the following two groups: young age control group (12 weeks) and old-aged group of rats (80 weeks). Urodynamic measurements were taken to compare the contraction interval and the contraction pressure between the two groups. The expression and cellular localization of caveolin 1 and 2 in the urothelium of the rat urinary bladder were determined by Western blot and immunofluorescence microscopy. RESULTS In cystometrograms, the contraction interval (min) was significantly shorter in the old-aged group (3.7±0.5 min) than in the young age control group (6.2±0.8 min). Also, the average contraction pressure (mmHg) was lower in the old-aged group (8.4±0.6 mmHg) than in the young age control group (13.2±1.3 mmHg). Caveolin 1 and 2 were expressed in the subepithelial area in the urothelium. The protein expression of both caveolin 1 and 2 was significantly lower in the old-aged group than in the young age control group. CONCLUSIONS Aging caused a significant change in the expression of caveolin 1 and 2 in the urothelium of the rat urinary bladder. These findings suggest that these molecules might have specific roles in the functional change of the urinary bladder that occurs in association with aging.
Collapse
Affiliation(s)
- Jae Hyeon Kim
- Department of Urology, Chonnam National University Medical School, Research Institute of Medical Sciences, Gwangju, Korea
| | - Seong Hyeon Yu
- Department of Urology, Chonnam National University Medical School, Research Institute of Medical Sciences, Gwangju, Korea
| | - Sun-Ouck Kim
- Department of Urology, Chonnam National University Medical School, Research Institute of Medical Sciences, Gwangju, Korea.
| |
Collapse
|
3
|
Sidler M, Aitken KJ, Jiang JX, Yadav P, Lloyd E, Ibrahim M, Choufani S, Weksberg R, Bägli D. Inhibition of DNA methylation during chronic obstructive bladder disease (COBD) improves function, pathology and expression. Sci Rep 2021; 11:17307. [PMID: 34453065 PMCID: PMC8397724 DOI: 10.1038/s41598-021-96155-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Partial bladder outlet obstruction due to prostate hyperplasia or posterior urethral valves, is a widespread cause of urinary dysfunction, patient discomfort and also responsible for immense health care costs. Even after removal or relief of obstruction, the functional and pathologic aspects of obstruction remain as a chronic obstructive bladder disease (COBD). Epigenetic changes, such as DNA methylation, contribute to the persistent character of many chronic diseases, and may be altered in COBD. We tested whether candidate genes and pathways and the pathophysiology of COBD were affected by a hypomethylating agent, decitabine (DAC). COBD was created in female Sprague-Dawley rats by surgical ligation of the urethra for 6 weeks, followed by removal of the suture. Sham ligations were performed by passing the suture behind the urethra. After removal of the obstruction or sham removal, animals were randomized to DAC treatment (1 mg/kg/3-times/week intraperitoneally) or vehicle (normal saline). Bladder function was non-invasively tested using metabolic cages, both one day prior to de-obstruction at 6 weeks and prior to sacrifice at 10 weeks. Residual volume and bladder mass were measured for each bladder. Bladders were examined by immunostaining as well as qPCR. The effects of DNA methyltransferase (DNMT)-3A knockout or overexpression on smooth muscle cell (SMC) function and phenotype were also examined in bladder SMC and ex vivo culture. Residual volumes of the DAC treated group were not significantly different from the NS group. Compared to COBD NS, COBD DAC treatment helped preserve micturition volume with a significant recovery of the voiding efficiency (ratio of the maximum voided volume/maximum bladder capacity) by one third (Fig. 1, p > 0.05). Brain-derived neurotrophic factor (BDNF) variants 1 and 5 were upregulated by COBD and significantly reduced by DAC treatment. Deposition of collagen in the COBD bladder was reduced by DAC, but gross hypertrophy remained. In bladder SMC, DNMT3A overexpression led to a loss of contractile function and phenotype. In bladders, persistently altered by COBD, inhibition of DNA-methylation enhances functional recovery, unlike treatment during partial obstruction, which exacerbates obstructive pathology. The underlying mechanisms may relate to the gene expression changes in BDNF and their effects on signaling in the bladder.
Collapse
Affiliation(s)
- Martin Sidler
- Paediatric and Neonatal Surgery, Klinikum Stuttgart, Stuttgart, Baden-Württemberg, Germany
| | - K J Aitken
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G0A4, Canada.
| | - Jia-Xin Jiang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Priyank Yadav
- Department of Urology and Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical Sciences, New PMSSY Rd, Raibareli Rd, Lucknow, Uttar Pradesh, 226014, India
| | - Erin Lloyd
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G0A4, Canada
| | - Malak Ibrahim
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G0A4, Canada
| | - Sanaa Choufani
- Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G0A4, Canada
| | - Rosanna Weksberg
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Darius Bägli
- Urology Division, Department of Surgery, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| |
Collapse
|
4
|
Hypoxia-Induced Suppression of Antiapoptotic Bcl-2 Expression in Human Bladder Tumor Cells Is Regulated by Caveolin-1-Dependent Adenosine Monophosphate-Activated Protein Kinase Activity. Int Neurourol J 2021; 25:137-149. [PMID: 33752282 PMCID: PMC8255828 DOI: 10.5213/inj.2040444.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/28/2021] [Indexed: 11/08/2022] Open
Abstract
Purpose Adenosine monophosphate-activated protein kinase (AMPK) is thought to inhibit cell proliferation or promote cell death, but the details remain unclear. In this study, we propose that AMPK inhibits the expression of anti-apoptotic B-cell lymphoma 2 (Bcl-2) by relying on the hypoxia-inducible factor 1 alpha (HIF-1α)-induced caveolin-1 (Cav-1) expression pathway in noninvasive human bladder tumor (RT4) cells. Methods In cells exposed to a hypoxic environment (0.5% oxygen), the levels of expression and phospho-activity of the relevant signaling enzymes were examined via Western blots and reverse transcription-polymerase chain reaction. Cell proliferation was assessed using a Cell Counting Kit-8 assay. Results The level of expression of Cav-1 was very low or undetectable in RT4 cells. Hypoxia was associated with significantly decreased cell growth, along with marked induction of HIF-1α and Cav-1 expression; additionally, it suppressed the expression of the antiapoptotic marker Bcl-2 while leaving AMPK activity unchanged. Under hypoxic conditions, HIF-1α acts as a transcription factor for Cav-1 mRNA gene expression. The cell growth and Bcl-2 expression suppressed under hypoxia were reversed along with decreases in the induced HIF-1α and Cav-1 levels by AMPK activation with metformin (1mM) or phenformin (0.1mM). In addition, pretreatment with AMPK small interfering RNA not only increased the hypoxia-induced expression of HIF-1α and Cav-1, but also reversed the suppression of Bcl-2 expression. These results suggest that HIF-1α and Cav-1 expression in hypoxic environments is regulated by basal AMPK activity; therefore, the inhibition of Bcl-2 expression cannot be expected when AMPK activity is suppressed, even if Cav-1 expression is elevated. Conclusions For the first time, we find that AMPK activation can regulate HIF-1α induction as well as HIF-1α-induced Cav1 expression, and the hypoxia-induced inhibitory effect on the antiapoptotic pathway in RT4 cells is due to Cav-1-dependent AMPK activity.
Collapse
|
5
|
Javed E, Thangavel C, Frara N, Singh J, Mohanty I, Hypolite J, Birbe R, Braverman AS, Den RB, Rattan S, Zderic SA, Deshpande DA, Penn RB, Ruggieri MR, Chacko S, Boopathi E. Increased expression of desmin and vimentin reduces bladder smooth muscle contractility via JNK2. FASEB J 2020; 34:2126-2146. [PMID: 31909533 PMCID: PMC7018560 DOI: 10.1096/fj.201901301r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/18/2019] [Accepted: 11/14/2019] [Indexed: 01/12/2023]
Abstract
Bladder dysfunction is associated with the overexpression of the intermediate filament (IF) proteins desmin and vimentin in obstructed bladder smooth muscle (BSM). However, the mechanisms by which these proteins contribute to BSM dysfunction are not known. Previous studies have shown that desmin and vimentin directly participate in signal transduction. In this study, we hypothesized that BSM dysfunction associated with overexpression of desmin or vimentin is mediated via c-Jun N-terminal kinase (JNK). We employed a model of murine BSM tissue in which increased expression of desmin or vimentin was induced by adenoviral transduction to examine the sufficiency of increased IF protein expression to reduce BSM contraction. Murine BSM strips overexpressing desmin or vimentin generated less force in response to KCl and carbachol relative to the levels in control murine BSM strips, an effect associated with increased JNK2 phosphorylation and reduced myosin light chain (MLC20 ) phosphorylation. Furthermore, desmin and vimentin overexpressions did not alter BSM contractility and MLC20 phosphorylation in strips isolated from JNK2 knockout mice. Pharmacological JNK2 inhibition produced results qualitatively similar to those caused by JNK2 knockout. These findings suggest that inhibition of JNK2 may improve diminished BSM contractility associated with obstructive bladder disease.
Collapse
Affiliation(s)
- Elham Javed
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Nagat Frara
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jagmohan Singh
- Department of Medicine, Division of Gastroenterology & Hepatology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ipsita Mohanty
- Department of Medicine, Division of Gastroenterology & Hepatology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joseph Hypolite
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ruth Birbe
- Department of Pathology and Laboratory Medicine, Cooper University Health Care, Camden, NJ, USA
| | - Alan S Braverman
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Robert B Den
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Satish Rattan
- Department of Medicine, Division of Gastroenterology & Hepatology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Stephen A Zderic
- Department of Urology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deepak A Deshpande
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Raymond B Penn
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael R Ruggieri
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Samuel Chacko
- Division of Urology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ettickan Boopathi
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
- Division of Urology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Berndt‐Paetz M, Herbst L, Weimann A, Gonsior A, Stolzenburg J, Neuhaus J. IC/BPS‐associated alterations of M2 and M3 muscarinic acetylcholine receptor trafficking in human detrusor. Neurourol Urodyn 2019; 38:1818-1827. [DOI: 10.1002/nau.24087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/10/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Mandy Berndt‐Paetz
- Department of Urology, Research LaboratoriesUniversity of Leipzig Leipzig Germany
| | - Luise Herbst
- Department of Urology, Research LaboratoriesUniversity of Leipzig Leipzig Germany
| | - Annett Weimann
- Department of Urology, Research LaboratoriesUniversity of Leipzig Leipzig Germany
| | - Andreas Gonsior
- Department of UrologyUniversity Hospital Leipzig AöR Leipzig Germany
| | | | - Jochen Neuhaus
- Department of Urology, Research LaboratoriesUniversity of Leipzig Leipzig Germany
| |
Collapse
|
7
|
Thangavel C, Gomes CM, Zderic SA, Javed E, Addya S, Singh J, Das S, Birbe R, Den RB, Rattan S, Deshpande DA, Penn RB, Chacko S, Boopathi E. NF-κB and GATA-Binding Factor 6 Repress Transcription of Caveolins in Bladder Smooth Muscle Hypertrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:847-867. [PMID: 30707892 DOI: 10.1016/j.ajpath.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 12/03/2018] [Accepted: 12/17/2018] [Indexed: 12/26/2022]
Abstract
Caveolins (CAVs) are structural proteins of caveolae that function as signaling platforms to regulate smooth muscle contraction. Loss of CAV protein expression is associated with impaired contraction in obstruction-induced bladder smooth muscle (BSM) hypertrophy. In this study, microarray analysis of bladder RNA revealed down-regulation of CAV1, CAV2, and CAV3 gene transcription in BSM from models of obstructive bladder disease in mice and humans. We identified and characterized regulatory regions responsible for CAV1, CAV2, and CAV3 gene expression in mice with obstruction-induced BSM hypertrophy, and in men with benign prostatic hyperplasia. DNA affinity chromatography and chromatin immunoprecipitation assays revealed a greater increase in binding of GATA-binding factor 6 (GATA-6) and NF-κB to their cognate binding motifs on CAV1, CAV2, and CAV3 promoters in obstructed BSM relative to that observed in control BSM. Knockout of NF-κB subunits, shRNA-mediated knockdown of GATA-6, or pharmacologic inhibition of GATA-6 and NF-κB in BSM increased CAV1, CAV2, and CAV3 transcription and promoter activity. Conversely, overexpression of GATA-6 decreased CAV2 and CAV3 transcription and promoter activity. Collectively, these data provide new insight into the mechanisms by which CAV gene expression is repressed in hypertrophied BSM in obstructive bladder disease.
Collapse
Affiliation(s)
| | - Cristiano M Gomes
- Division of Urology, University of Sao Paulo School of Medicine, Hospital das Clinicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Stephen A Zderic
- Department of Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elham Javed
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sankar Addya
- Kimmel Cancer Centre, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jagmohan Singh
- Division of Gastroenterology and Hepatology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sreya Das
- Kimmel Cancer Centre, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ruth Birbe
- Department of Pathology and Laboratory Medicine, Cooper University Health Care, Camden, New Jersey
| | - Robert B Den
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Satish Rattan
- Division of Gastroenterology and Hepatology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Deepak A Deshpande
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Raymond B Penn
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Samuel Chacko
- Division of Urology, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ettickan Boopathi
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; Division of Urology, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
8
|
Santos AL, Preta G. Lipids in the cell: organisation regulates function. Cell Mol Life Sci 2018; 75:1909-1927. [PMID: 29427074 PMCID: PMC11105414 DOI: 10.1007/s00018-018-2765-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/04/2018] [Accepted: 01/29/2018] [Indexed: 12/19/2022]
Abstract
Lipids are fundamental building blocks of all cells and play important roles in the pathogenesis of different diseases, including inflammation, autoimmune disease, cancer, and neurodegeneration. The lipid composition of different organelles can vary substantially from cell to cell, but increasing evidence demonstrates that lipids become organised specifically in each compartment, and this organisation is essential for regulating cell function. For example, lipid microdomains in the plasma membrane, known as lipid rafts, are platforms for concentrating protein receptors and can influence intra-cellular signalling. Lipid organisation is tightly regulated and can be observed across different model organisms, including bacteria, yeast, Drosophila, and Caenorhabditis elegans, suggesting that lipid organisation is evolutionarily conserved. In this review, we summarise the importance and function of specific lipid domains in main cellular organelles and discuss recent advances that investigate how these specific and highly regulated structures contribute to diverse biological processes.
Collapse
Affiliation(s)
- Ana L Santos
- Institut National de la Santé et de la Recherche Médicale, U1001 and Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Giulio Preta
- Institute of Biochemistry, Vilnius University, Sauletekio 7, LT-10257, Vilnius, Lithuania.
| |
Collapse
|
9
|
Berndt-Paetz M, Herbst L, Weimann A, Gonsior A, Stolzenburg JU, Neuhaus J. Highly specific detection of muscarinic M3 receptor, G protein interaction and intracellular trafficking in human detrusor using Proximity Ligation Assay (PLA). Acta Histochem 2018; 120:329-339. [PMID: 29551457 DOI: 10.1016/j.acthis.2018.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/08/2018] [Accepted: 03/09/2018] [Indexed: 01/06/2023]
Abstract
PURPOSE Muscarinic acetylcholine receptors (mAChRs) regulate a number of important physiological functions. Alteration of mAChR expression or function has been associated in the etiology of several pathologies including functional bladder disorders (e.g bladder pain syndrome/interstitial cystitis - BPS/IC). In a previous study we found specific mAChR expression patterns associated with BPS/IC, while correlation between protein and gene expression was lacking. Posttranslational regulatory mechanisms, e.g. altered intracellular receptor trafficking, could explain those differences. In addition, alternative G protein (GP) coupling could add to the pathophysiology via modulation of muscarinic signaling. In our proof-of-principle study, we addressed these questions in situ. We established PLA in combination with confocal laserscanning microscopy (CLSM) and 3D object reconstruction for highly specific detection and analysis of muscarinic 3 receptors (M3), G protein (GP) coupling and intracellular trafficking in human detrusor samples. MATERIAL AND METHODS Paraffin sections of formalin-fixed bladder tissue (FFPE) of BPS/IC patients receiving transurethral biopsy were examined by Cy3-PLA for M3 expression, coupling of M3 to GPs (Gαq/11, Gαs, Gαi) and interaction of M3 with endocytic regulator proteins. Membranes were labeled with wheat germ agglutinin-Alexa Fluor®488, nuclei were stained with DAPI. Object density and co-localization were analyzed in 3D-reconstruction of high resolution confocal z-stacks. RESULTS Confocal image stack processing resulted in well demarcated objects. Calculated receptor densities correlated significantly with existing confocal expression data, while significantly improved specificity of M3 detection by PLA was verified using bladder tissue samples from transgenic mice. 50-60% of the M3 receptor complexes were plasma membrane associated in human bladder detrusor. Application of PLA for M3 and GPs allowed visualization of M3-GP interactions and revealed individual GP-subtype coupling patterns. Detection of M3 interactions with endocytic trafficking proteins by PLA resulted in object sizes correlating with well-documented vesicle sizes of the endocytosis pathway. CONCLUSION PLA enabled highly specific detection of M3 receptor expression, demonstration of M3/GP differential coupling and intracellular M3 trafficking in human detrusor smooth muscle cells. This new approach minimized background fluorescence and antibody cross-reactions resulting from single antibody application, and enhanced specificity due to the use of two primary antibodies. Use of subcellular markers allowed visualization of subcellular receptor location. PLA/CLSM allows analyses of muscarinic "receptor - G protein - promiscuity" and intracellular trafficking even in bladder paraffin sections and may give new insights into the etiology and pathology of BPS/IC.
Collapse
|
10
|
Urinary bladder organ hypertrophy is partially regulated by Akt1-mediated protein synthesis pathway. Life Sci 2018; 201:63-71. [PMID: 29572181 DOI: 10.1016/j.lfs.2018.03.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 11/20/2022]
Abstract
AIMS The present study aims to investigate the role of Akt in the regulation of urinary bladder organ hypertrophy caused by partial bladder outlet obstruction (pBOO). MAIN METHODS Male rats were surgically induced for pBOO. Real-time PCR and western blot were used to examine the levels of mRNA and protein. A phosphoinositide 3-kinase (PI3K) inhibitor LY294002 was used to inhibit the activity of endogenous Akt. KEY FINDINGS The urinary bladder developed hypertrophy at 2 weeks of pBOO. The protein but not mRNA levels of type I collagen and α-smooth muscle actin (αSMA) were increased in pBOO bladder when compared to sham control. The phosphorylation (activation) levels of Akt1 (p-Ser473), mammalian target of rapamycin (mTOR), p70S6 kinase (p70S6K), and 4E-BP1 were also increased in pBOO bladder. LY294002 treatment reduced the phosphorylation levels of Akt1 and 4E-BP1, and the protein levels of type I collagen and αSMA in pBOO bladder. The mRNA and protein levels of proliferating cell nuclear antigen (PCNA) were increased in pBOO bladder, and PCNA up-regulation occurred in urothelial not muscular layer. LY294002 treatment had no effect on the mRNA and protein levels of PCNA in pBOO bladder. LY294002 treatment partially reduced the bladder weight caused by pBOO. SIGNIFICANCE pBOO-induced urinary bladder hypertrophy is attributable to fibrosis, smooth muscle cellular hypertrophy, and urothelium cell hyper-proliferation. Akt1-mediated protein synthesis in pBOO bladder contributes to type I collagen and αSMA but not PCNA up-regulation. Target of Akt1 is necessary but not sufficient in treatment of urinary bladder hypertrophy following pBOO.
Collapse
|
11
|
Pineda RH, Nedumaran B, Hypolite J, Pan XQ, Wilson S, Meacham RB, Malykhina AP. Altered expression and modulation of the two-pore-domain (K 2P) mechanogated potassium channel TREK-1 in overactive human detrusor. Am J Physiol Renal Physiol 2017; 313:F535-F546. [PMID: 28539337 DOI: 10.1152/ajprenal.00638.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/10/2017] [Accepted: 05/18/2017] [Indexed: 01/25/2023] Open
Abstract
Detrusor overactivity (DO) is the abnormal response of the urinary bladder to physiological stretch during the filling phase of the micturition cycle. The mechanisms of bladder smooth muscle compliance upon the wall stretch are poorly understood. We previously reported that the function of normal detrusor is regulated by TREK-1, a member of the mechanogated subfamily of two-pore-domain potassium (K2P) channels. In the present study, we aimed to identify the changes in expression and function of TREK-1 channels under pathological conditions associated with DO, evaluate the potential relationship between TREK-1 channels and cytoskeletal proteins in the human bladder, and test the possibility of modulation of TREK-1 channel expression by small RNAs. Expression of TREK-1 channels in DO specimens was 2.7-fold decreased compared with control bladders and was associated with a significant reduction of the recorded TREK-1 currents. Isolated DO muscle strips failed to relax when exposed to a TREK-1 channel opener. Immunocytochemical labeling revealed close association of TREK-1 channels with cell cytoskeletal proteins and caveolins, with caveolae microdomains being severely disrupted in DO specimens. Small activating RNA (saRNA) tested in vitro provided evidence that expression of TREK-1 protein could be partially upregulated. Our data confirmed a significant downregulation of TREK-1 expression in human DO specimens and provided evidence of close association between the channel, cell cytoskeleton, and caveolins. Upregulation of TREK-1 expression by saRNA could be a future step for the development of in vivo pharmacological and genetic approaches to treat DO in humans.
Collapse
Affiliation(s)
- Ricardo H Pineda
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| | - Balachandar Nedumaran
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| | - Joseph Hypolite
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| | - Xiao-Qing Pan
- Division of Urology, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shandra Wilson
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| | - Randall B Meacham
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| |
Collapse
|
12
|
Dong X, Song Q, Zhu J, Zhao J, Liu Q, Zhang T, Long Z, Li J, Wu C, Wang Q, Hu X, Damaser M, Li L. Interaction of Caveolin-3 and HCN is involved in the pathogenesis of diabetic cystopathy. Sci Rep 2016; 6:24844. [PMID: 27122250 PMCID: PMC4848475 DOI: 10.1038/srep24844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/05/2016] [Indexed: 12/26/2022] Open
Abstract
A growing body of research suggests that impaired bladder Cajal-like interstitial cells (ICCs) are a important component in the pathogenesis of diabetes-induced bladder dysfunction, although the molecular mechanisms have not been illustrated completely. The purpose of this study was to examine whether the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in ICCs-DM were responsible for the detrusor weak contractility of Diabetic cystopathy (DCP) and to study the possible mechanism of regulating the expression and function of HCN channels. HCN channels expression were decreased at the mRNA and protein levels. Forskolin (FSK), which can elevate intracellular cAMP levels, increased the density of the hyperpolarization-activated current and intracellular calcium concentration in both normal control (NC) rats and DCP rats, but the sensitivity of FSK on HCN channels was clearly down-regulated in DCP rats. The loss of caveolae and caveolin was in accordance with the decrease in HCN channels. Caveolin-3 co-localizes with and affects the expression and function of HCN. Taken together, these results indicate that the loss of caveolae and HCN channels in ICCs-DM is important in the pathogenesis of DCP. Increasing the number of caveolae to enhance the function of HCN channels may represent a viable target for the pharmacological treatment of DCP.
Collapse
Affiliation(s)
- Xingyou Dong
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qixiang Song
- Department of Biomedical Engineering, the Cleveland Clinic, Cleveland, OH, United States of America
| | - Jingzhen Zhu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Jiang Zhao
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qian Liu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Teng Zhang
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Zhou Long
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Jia Li
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Chao Wu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qingqing Wang
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoyan Hu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Margot Damaser
- Department of Biomedical Engineering, the Cleveland Clinic, Cleveland, OH, United States of America
| | - Longkun Li
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
13
|
Is Postpartum Urinary Retention a Neurogenic Phenomenon? CURRENT BLADDER DYSFUNCTION REPORTS 2015. [DOI: 10.1007/s11884-015-0321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Expression of heat shock protein 27 correlates with actin cytoskeletal dynamics and contractility of cultured human bladder smooth muscle cells. Exp Cell Res 2015; 338:39-44. [DOI: 10.1016/j.yexcr.2015.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 02/08/2023]
|
15
|
Patra PB, Patra S. Research Findings on Overactive Bladder. Curr Urol 2015; 8:1-21. [PMID: 26195957 PMCID: PMC4483299 DOI: 10.1159/000365682] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 01/09/2014] [Indexed: 12/19/2022] Open
Abstract
Several physiopathologic conditions lead to the manifestation of overactive bladder (OAB). These conditions include ageing, diabetes mellitus, bladder outlet obstruction, spinal cord injury, stroke and brain injury, Parkinson's disease, multiple sclerosis, interstitial cystitis, stress and depression. This review has discussed research findings in human and animal studies conducted on the above conditions. Several structural and functional changes under these conditions have not only been observed in the lower urinary tract, but also in the brain and spinal cord. Significant changes were observed in the following areas: neurotransmitters, prostaglandins, nerve growth factor, Rho-kinase, interstitial cells of Cajal, and ion and transient receptor potential channels. Interestingly, alterations in these areas showed great variation in each of the conditions of the OAB, suggesting that the pathophysiology of the OAB might be different in each condition of the disease. It is anticipated that this review will be helpful for further research on new and specific drug development against OAB.
Collapse
Affiliation(s)
- Phani B. Patra
- King of Prussia, Drexel University College of Medicine, Philadelphia, Pa., USA
| | - Sayani Patra
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pa., USA
| |
Collapse
|
16
|
Gevaert T, Vanstreels E, Daelemans D, Franken J, Van Der Aa F, Roskams T, De Ridder D. Identification of Different Phenotypes of Interstitial Cells in the Upper and Deep Lamina Propria of the Human Bladder Dome. J Urol 2014; 192:1555-63. [DOI: 10.1016/j.juro.2014.05.096] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2014] [Indexed: 01/14/2023]
Affiliation(s)
- Thomas Gevaert
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Department of Pathology, AZ Klina, Brasschaat, Belgium
| | - Els Vanstreels
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Dirk Daelemans
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jan Franken
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Frank Van Der Aa
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Tania Roskams
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Dirk De Ridder
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Boopathi E, Gomes C, Zderic SA, Malkowicz B, Chakrabarti R, Patel DP, Wein AJ, Chacko S. Mechanical stretch upregulates proteins involved in Ca2+ sensitization in urinary bladder smooth muscle hypertrophy. Am J Physiol Cell Physiol 2014; 307:C542-53. [PMID: 25031021 DOI: 10.1152/ajpcell.00033.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Partial bladder outlet obstruction (pBOO)-induced remodeling of bladder detrusor smooth muscle (DSM) is associated with the modulation of cell signals regulating contraction. We analyzed the DSM from obstructed murine urinary bladders for the temporal regulation of RhoA GTPase and Rho-activated kinase (ROCK), which are linked to Ca(2+) sensitization. In addition, the effects of equibiaxial cell stretch, a condition thought to be associated with pBOO-induced bladder wall smooth muscle hypertrophy and voiding frequency, on the expression of RhoA, ROCK, and C-kinase-activated protein phosphatase I inhibitor (CPI-17) were investigated. DSM from 1-, 3-, 7-, and 14-day obstructed male mice bladders and benign prostatic hyperplasia (BPH)-induced obstructed human bladders revealed overexpression of RhoA and ROCK-β at the mRNA and protein levels compared with control. Primary human bladder myocytes seeded onto type I collagen-coated elastic silicone membranes were subjected to cyclic equibiaxial stretch, mimicking the cellular mechanical stretch in the bladder in vivo, and analyzed for the expression of RhoA, ROCK-β, and CPI-17. Stretch caused a significant increase of RhoA, ROCKβ, and CPI-17 expression. The stretch-induced increase in CPI-17 expression occurs at the transcriptional level and is associated with CPI-17 promoter binding by GATA-6 and NF-κB, the transcription factors responsible for CPI-17 gene transcription. Cell stretch caused by bladder overdistension in pBOO is the likely mechanism for initiating overexpression of the signaling proteins regulating DSM tone.
Collapse
Affiliation(s)
- Ettickan Boopathi
- Division of Urology, Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Cristiano Gomes
- Hospital das Clinicas, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Stephen A Zderic
- Department of Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Bruce Malkowicz
- Division of Urology, Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Ranjita Chakrabarti
- Division of Urology, Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Darshan P Patel
- Division of Urology, Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Alan J Wein
- Division of Urology, Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Samuel Chacko
- Division of Urology, Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
| |
Collapse
|
18
|
Liang CC, Lin YH, Chen TC, Chang SD. How antepartum and postpartum acute urinary retention affects the function and structure of the rat bladder. Int Urogynecol J 2014; 25:1105-13. [PMID: 24515542 DOI: 10.1007/s00192-013-2320-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/25/2013] [Indexed: 12/17/2022]
Abstract
INTRODUCTION AND HYPOTHESIS To examine the effect of acute urinary retention (AUR) on the urodynamic function and molecular structure of rat bladders in pregnancy and after parturition. METHODS Forty-eight nulliparous rats were distributed into AUR and non-AUR groups. AUR was induced by clamping the distal urethra of each rat after infusing 3 ml of saline for 60 min. Plasma progesterone levels and cystometric data were evaluated on the 14th day of gestation, 3 and 10 days postpartum, and in virgin rats. The immunoreactivity of caveolins and nerve growth factor (NGF) was analyzed. The number of caveolae in bladder muscle cells was evaluated by electron microscopy. RESULTS Progesterone levels significantly increased during pregnancy and 3 days postpartum. In cystometric results, the AUR group has significantly shorter intercontraction interval, lower void volume and greater residual volume compared with the non-AUR. AUR rats exhibited higher NGF immunoreactivity, lower caveolin-1 immunoreactivity, and less caveolae in the bladder compared with the non-AUR. The caveolin-1 and NGF immunoreactivity and the number of caveolae in the bladder decreased during pregnancy and 3 days postpartum compared with virgin rats. By using Pearson correlations, we found significant correlations between urodynamic variables (residual volumes and intercontraction intervals) and the expressions of caveolin-1, caveolae and NGF in the AUR rats on the 14th day of gestation and 3 days postpartum. CONCLUSIONS Bladder dysfunction in pregnancy and immediately postpartum in a rat model caused by AUR is associated with the plasma progesterone level change and the expressions of caveolin, caveolae, and NGF in bladder muscle cells.
Collapse
Affiliation(s)
- Ching-Chung Liang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, 5, Fu-Shin Street, Kweishan, Taoyuan, Taiwan, Republic of China, 333,
| | | | | | | |
Collapse
|
19
|
Overexpression of aquaporin-1 and caveolin-1 in the rat urinary bladder urothelium following bladder outlet obstruction. Int Neurourol J 2013; 17:174-9. [PMID: 24466464 PMCID: PMC3895509 DOI: 10.5213/inj.2013.17.4.174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 11/29/2013] [Indexed: 11/08/2022] Open
Abstract
PURPOSE This study was designed to investigate the effect of detrusor overactivity induced by partial bladder outlet obstruction (BOO) on the expression of aquaporin 1 (AQP1) and caveolin 1 (CAV1) in the rat urinary bladder, and to determine the role of these molecules in detrusor overactivity. METHODS Female Sprague-Dawley rats were divided into control (n=30) and experimental (n=30) groups. The BOO group underwent partial BOO, and the control group underwent a sham operation. After 4 weeks, an urodynamic study was performed to measure the contraction interval and contraction pressure. The expression and cellular localization of AQP1 and CAV1 were determined by western blot and immunofluorescence experiments in the rat urinary bladder. RESULTS In cystometrograms, the contraction interval was significantly lower in the BOO group (2.9±1.5 minutes) than in the control group (6.7±1.0 minutes) (P<0.05). Conversely, the average contraction pressure was significantly higher in the BOO group (21.2±3.3 mmHg) than in the control group (13.0±2.5 mmHg) (P<0.05). AQP1 and CAV1 were coexpressed in the capillaries, arterioles, and venules of the suburothelial layer. AQP1 and CAV1 protein expression was significantly increased in the BOO rats compared to the control rats (P<0.05). CONCLUSIONS Detrusor overactivity induced by BOO causes a significant increase in the expression of AQP1 and CAV1, which were coexpressed in the suburothelial microvasculature. This finding suggests that AQP1 and CAV1 might be closely related to bladder signal activity and may have a functional role in BOO-associated detrusor overactivity.
Collapse
|
20
|
Kim SO, Song SH, Lee SC, Cho KA, Park JS, Kwon D, Park K. Altered expression of caveolin 2 and 3 in smooth muscle of rat urinary bladder by 17β-estradiol. BMC Urol 2013; 13:44. [PMID: 24040945 PMCID: PMC3856458 DOI: 10.1186/1471-2490-13-44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 09/10/2013] [Indexed: 01/08/2023] Open
Abstract
Background The purpose of this study was to investigate the effect of estrogen alteration on the expression of caveolin 2 and 3 in rat smooth muscle of urinary bladder. Methods Female Sprague–Dawley rats were divided into three groups: control, bilateral ovariectomy (Ovx), and bilateral ovariectomy followed by subcutaneous injections of 17β-estradiol (Ovx?+?Est). After 4 weeks, urodynamic measurements were taken to ascertain the contraction interval and contraction pressure. The expression and cellular localization of caveolin 2 and 3 were determined by Western blot and immunohistochemistry in rat urinary bladder smooth muscle. Results In cystometrograms, the contraction interval (min) was significantly lower in the Ovx group (3.1?±?1.5) than in the control group (5.6?±?1.2), but was increased after estrogen treatment (9.3?±?1.0). Conversely, the average contraction pressure (mmHg) was higher in the Ovx group (26.2?±?2.3) than in the control group (21.9?±?3.1), and was decreased after estrogen treatment (23.8?±?3.5). Caveolin 2 and 3 expression was localized in the cell membrane of the smooth muscle. The protein expression of both caveolin 2 and 3 was significantly lower after ovariectomy and was restored to the control levels after 17β-estradiol treatment. Conclusions Hormonal alteration causes a significant change in the expression of caveolin 2 and 3 in smooth muscle of rat urinary bladder. These findings suggest that these molecules might have functional roles in the detrusor overactivity that occurs in association with hormonal alteration.
Collapse
Affiliation(s)
- Sun-Ouck Kim
- Department of Urology, Research Institute of Medical Sciences, Chonnam National University, 8, Hak-dong, Dong-ku, Gwangju 501-757, Korea.
| | | | | | | | | | | | | |
Collapse
|
21
|
Deng M, Boopathi E, Hypolite JA, Raabe T, Chang S, Zderic S, Wein AJ, Chacko S. Amino acid mutations in the caldesmon COOH-terminal functional domain increase force generation in bladder smooth muscle. Am J Physiol Renal Physiol 2013; 305:F1455-65. [PMID: 23986516 DOI: 10.1152/ajprenal.00174.2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Caldesmon (CaD), a component of smooth muscle thin filaments, binds actin, tropomyosin, calmodulin, and myosin and inhibits actin-activated ATP hydrolysis by smooth muscle myosin. Internal deletions of the chicken CaD functional domain that spans from amino acids (aa) 718 to 731, which corresponds to aa 512-530 including the adjacent aa sequence in mouse CaD, lead to diminished CaD-induced inhibition of actin-activated ATP hydrolysis by myosin. Transgenic mice with mutations of five aa residues (Lys(523) to Gln, Val(524) to Leu, Ser(526) to Thr, Pro(527) to Cys, and Lys(529) to Ser), which encompass the ATPase inhibitory determinants located in exon 12, were generated by homologous recombination. Homozygous (-/-) animals did not develop, but heterozygous (+/-) mice carrying the expected mutations in the CaD ATPase inhibitory domain (CaD mutant) matured and reproduced normally. The peak force produced in response to KCl and electrical field stimulation by the detrusor smooth muscle from the CaD mutant was high compared with that of the wild type. CaD mutant mice revealed nonvoiding contractions during bladder filling on awake cystometry, suggesting that the CaD ATPase inhibitory domain suppresses force generation during the filling phase and this suppression is partially released by mutations in 50% of CaD in heterozygous. Our data show for the first time a functional phenotype, at the intact smooth muscle tissue and in vivo organ levels, following mutation of a functional domain at the COOH-terminal region of CaD.
Collapse
Affiliation(s)
- Maoxian Deng
- Dept. of Surgery and Dept. of Pathobiology, Univ. of Pennsylvania, 500 South Ridgeway Ave., Glenolden, PA 19036.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Expression of caveolin-1 in rat urinary bladder with cyclophosphamide-induced cystitis. Int Neurourol J 2012; 16:169-74. [PMID: 23346482 PMCID: PMC3547177 DOI: 10.5213/inj.2012.16.4.169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 12/20/2012] [Indexed: 11/17/2022] Open
Abstract
Purpose The purposes of this study were to investigate the effect of cyclophosphamide (CYP)-induced inflammatory cystitis on caveolin 1 in rat urinary bladder and to determine the role of these molecules in the bladder dysfunction that occurs in inflammatory change in rat urinary bladder. Methods Female Sprague-Dawley rats were divided into control (n=30) and experimental (n=30) groups. Cystitis in experimental group was induced by intraperitoneal injection of CYP (200 mg/kg). The control group underwent an intraperitoneal saline injection. After 3 days, urodynamic studies were done to measure the contraction interval and contraction pressure. The expression and cellular localization of caveolin 1 were determined by Western blot and immunofluorescent study in rat urinary bladder. Results In cystometrograms, the contraction interval (minute) was significantly increased in the CYP-induced cystitis rats (15.8±1.5) than in the control group (6.3±0.5) (P<0.05). Conversely, the average contraction pressure (mmHg) was significantly higher in the CYP-induced cystitis rats (15.6±1.7) than in the control group (11.3±0.5) (P<0.05). Caveolin 1 was expressed in the capillaries, arteriols and venules. The protein expression of caveolin 1 was significantly decreased in the CYP-induced cystitis rats (P<0.05). Conclusions Inflammatory change of urinary bladder maybe causes a significant change in the expression of caveolin 1. These findings suggest that caveolin 1 might have a functional role in the bladder dysfunction related with cystitis in rat urinary bladder.
Collapse
|
23
|
GATA-6 and NF-κB activate CPI-17 gene transcription and regulate Ca2+ sensitization of smooth muscle contraction. Mol Cell Biol 2012; 33:1085-102. [PMID: 23275439 DOI: 10.1128/mcb.00626-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Protein kinase C (PKC)-potentiated inhibitory protein of 17 kDa (CPI-17) inhibits myosin light chain phosphatase, altering the levels of myosin light chain phosphorylation and Ca(2+) sensitivity in smooth muscle. In this study, we characterized the CPI-17 promoter and identified binding sites for GATA-6 and nuclear factor kappa B (NF-κB). GATA-6 and NF-κB upregulated CPI-17 expression in cultured human and mouse bladder smooth muscle (BSM) cells in an additive manner. CPI-17 expression was decreased upon GATA-6 silencing in cultured BSM cells and in BSM from NF-κB knockout (KO) mice. Moreover, force maintenance by BSM strips from KO mice was decreased compared with the force maintenance of BSM strips from wild-type mice. GATA-6 and NF-κB overexpression was associated with CPI-17 overexpression in BSM from men with benign prostatic hyperplasia (BPH)-induced bladder hypertrophy and in a mouse model of bladder outlet obstruction. Thus, aberrant expression of NF-κB and GATA-6 deregulates CPI-17 expression and the contractile function of smooth muscle. Our data provide insight into how GATA-6 and NF-κB mediate CPI-17 transcription, PKC-mediated signaling, and BSM remodeling associated with lower urinary tract symptoms in patients with BPH.
Collapse
|
24
|
Cristofaro V, Yalla SV, Sullivan MP. Altered Caveolar Mediated Purinergic Signaling in Spontaneously Hypertensive Rats with Detrusor Overactivity. J Urol 2012; 188:1017-26. [DOI: 10.1016/j.juro.2012.04.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Indexed: 12/27/2022]
Affiliation(s)
- Vivian Cristofaro
- Division of Urology, Veterans Affairs Boston Healthcare System, Harvard Medical School, Boston, Massachusetts
| | - Subbarao V. Yalla
- Division of Urology, Veterans Affairs Boston Healthcare System, Harvard Medical School, Boston, Massachusetts
| | - Maryrose P. Sullivan
- Division of Urology, Veterans Affairs Boston Healthcare System, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
25
|
Sullivan MP, Cristofaro V, Radisavljevic ZM, Yalla SV. Regional distribution and molecular interaction of caveolins in bladder smooth muscle. BJU Int 2012; 110:E1163-72. [PMID: 22897417 DOI: 10.1111/j.1464-410x.2012.11410.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
UNLABELLED What's known on the subject? and What does the study add? Caveolae are specialised regions of bladder smooth muscle (BSM) cell membranes where specific signalling pathways are regulated. Caveolin proteins are involved in caveolar biogenesis and function as signal transduction regulators. Expression of caveolin-1, -2, and -3 has been previously identified in the bladder; however, the distribution and relative expression of these proteins have not been defined. The present data show significant differences in the spatial distribution of caveolin proteins throughout the bladder wall. Region dependent variations in the co-localisation of caveolin subtypes in detrusor SM were also detected. These findings support the premise that the unique spatial pattern of caveolin proteins associated with BSM cells may enable regionally distinct functional responses to common stimuli. OBJECTIVE • To determine the regional expression profile of caveolin isoforms (integral membrane proteins abundant in caveolae), the spatial relationships among caveolin proteins within specific smooth muscle (SM) regions and the extent of their molecular interactions in bladder SM (BSM). MATERIALS AND METHODS • Regional differences in the expression of caveolin family members were determined by quantitative reverse transcriptase-polymerase chain reaction and Western blot of RNA and protein extracted from the base, body and dome of rat bladders. • To evaluate the distribution of caveolin-1 (Cav-1), Cav-2 and Cav-3 within the bladder, longitudinal tissue sections from the base to dome were processed for confocal microscopy and quantified for intensity of immunoreactivity (IR) and extent of co-localisation. • Interactions among Cav-1, Cav-2 and Cav-3 were determined by co-immunoprecipitation. RESULTS • Differential expression of Cav-1 and Cav-3 was detected among bladder regions, with lowest expression in the bladder base relative to the dome. • Cav-1 was highly expressed in all regions, although an increase in IR from submucosa to serosa was detected in each region. • The distribution of Cav-2 IR generally paralleled Cav-1, but progressively decreased from submucosa to serosa in each region. • Cav-3 expression predominated in the medial region of BSM increasing progressively from base to dome, but was poorly expressed in the outer SM layer particularly in the dome. • Cav-1 co-precipitated extensively with both Cav-2 and Cav-3. Co-precipitation between Cav-3 and Cav-2 was also detected. CONCLUSIONS • The isoform-specific spatial distribution and distinct molecular interactions among caveolins in BSM may contribute to the contractile heterogeneity of BSM cells and facilitate differential modulation of responses to local stimuli. • As BSM caveolae regulate key signalling processes involved in contraction, altered expression of caveolin proteins may generate a regional imbalance in contraction/relaxation responses, thus leading to bladder dysfunction.
Collapse
Affiliation(s)
- Maryrose P Sullivan
- Division of Urology, Veterans Affairs Boston Healthcare System, Boston, MA 02132, USA.
| | | | | | | |
Collapse
|
26
|
Burmeister D, AbouShwareb T, D'Agostino R, Andersson KE, Christ GJ. Impact of partial urethral obstruction on bladder function: time-dependent changes and functional correlates of altered expression of Ca²⁺ signaling regulators. Am J Physiol Renal Physiol 2012; 302:F1517-28. [PMID: 22442207 DOI: 10.1152/ajprenal.00016.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In animal models of partial urethral obstruction (PUO), altered smooth muscle function/contractility may be linked to changes in molecules that regulate calcium signaling/sensitization. PUO was created in male rats, and urodynamic studies were conducted 2 and 6 wk post-PUO. Cystometric recordings were analyzed for the presence or absence of nonvoiding contractions [i.e., detrusor overactivity (DO)]. RT-PCR and Western blots were performed on a subpopulation of rats to study the relationship between the expression of RhoA, L-type Ca(2+) channels, Rho kinase-1, Rho kinase-2, inositol 1,4,5-trisphosphate, ryanodine receptor, sarco(endo)plasmic reticulum Ca(2+)-ATPase 2 and protein kinase C (PKC)-potentiated phosphatase inhibitor of 17 kDa, and urodynamic findings in the same animal. Animals displayed DO at 2 (38%) and 6 wk (43%) post-PUO, increases were seen in in vivo pressures at 2 wk, and residual volume at 6 wk. Statistical analysis of RT-PCR and Western blot data at 2 wk, during the compensatory phase of detrusor hypertrophy, documented that expression of molecules that regulate calcium signaling and sensitization was consistently lower in obstructed rats without DO than those with DO or control rats. Among rats with DO at 2 wk, linear regression analysis revealed positive correlations between in vivo pressures and protein and mRNA expression of several regulatory molecules. At 6 wk, in the presence of overt signs of bladder decompensation, no clear or consistent alterations in expression of these same targets were observed at the protein level. These data extend prior work to suggest that molecular profiling of key regulatory molecules during the progression of PUO-mediated bladder dysfunction may shed new light on potential biomarkers and/or therapeutic targets.
Collapse
Affiliation(s)
- David Burmeister
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | |
Collapse
|
27
|
Lowalekar SK, Cristofaro V, Radisavljevic ZM, Yalla SV, Sullivan MP. Loss of bladder smooth muscle caveolae in the aging bladder. Neurourol Urodyn 2012; 31:586-92. [PMID: 22374691 DOI: 10.1002/nau.21217] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 08/15/2011] [Indexed: 12/16/2022]
Abstract
AIMS Caveolae are specialized regions of the cell membrane that modulate signal transduction and alterations in these structures affect bladder smooth muscle (BSM) contraction. Since bladder dysfunctions are common in the elderly, we evaluated the effect of aging on the morphology of caveolae and caveolin protein expression in BSM. METHODS Caveolar morphology (number, size, and depth) in BSM was determined from electron microscopy images of young (10 weeks), adult (6-month old), and old (12-month old) rat urinary bladders. Changes in expression levels of caveolin proteins with age were investigated by Western blot and immunofluorescence microscopy. Caveolin-3 gene expression was determined by real-time RT-PCR in young and 19-month-old rat bladders. RESULTS Twelve-month-old animals exhibited 50% fewer BSM caveolae compared to young (P < 0.01). The area of caveolae was significantly decreased at 6 and 12 months. Despite a decrease in the number of BSM caveolae at 12 months, the expression of caveolin-1 and cavin-1 were unaltered with age. In contrast, caveolin-2 and caveolin-3 protein expression and immunoreactivity were reduced in BSM at 6 and 12 months of age. Caveolin-3 gene expression was also downregulated at 19 months compared to young animals. CONCLUSION Biological aging significantly decreases BSM caveolae number and morphology with associated selective alteration in caveolin protein expression. Since caveolae are protected membrane regions that regulate signal transduction, age-related alterations in caveolae and caveolin protein expression could alter BSM contractility resulting in bladder dysfunctions of the elderly.
Collapse
Affiliation(s)
- Samar K Lowalekar
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
28
|
Boopathi E, Gomes CM, Goldfarb R, John M, Srinivasan VG, Alanzi J, Malkowicz SB, Kathuria H, Zderic SA, Wein AJ, Chacko S. Transcriptional repression of Caveolin-1 (CAV1) gene expression by GATA-6 in bladder smooth muscle hypertrophy in mice and human beings. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2236-51. [PMID: 21514437 DOI: 10.1016/j.ajpath.2011.01.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 12/28/2010] [Accepted: 01/25/2011] [Indexed: 01/08/2023]
Abstract
Hypertrophy occurs in urinary bladder wall smooth muscle (BSM) in men with partial bladder outlet obstruction (PBOO) caused by benign prostatic hyperplasia (BPH) and in animal models of PBOO. Hypertrophied BSM from the rabbit model exhibits down-regulation of caveolin-1, a structural and functional protein of caveolae that function as signaling platforms to mediate interaction between receptor proteins and adaptor and effector molecules to regulate signal generation, amplification, and diversification. Caveolin-1 expression is diminished in PBOO-induced BSM hypertrophy in mice and in men with BPH. The proximal promoter of the human and mouse caveolin-1 (CAV1) gene was characterized, and it was observed that the transcription factor GATA-6 binds this promoter, causing reduced expression of caveolin-1. Furthermore, caveolin-1 expression levels inversely correlate with the abundance of GATA-6 in BSM hypertrophy in mice and human beings. Silencing of GATA6 gene expression up-regulates caveolin-1 expression, whereas overexpression of GATA-6 protein sustains the transcriptional repression of caveolin-1 in bladder smooth muscle cells. Together, these data suggest that GATA-6 acts as a transcriptional repressor of CAV1 gene expression in PBOO-induced BSM hypertrophy in men and mice. GATA-6-induced transcriptional repression represents a new regulatory mechanism of CAV1 gene expression in pathologic BSM, and may serve as a target for new therapy for BPH-induced bladder dysfunction in aging men.
Collapse
Affiliation(s)
- Ettickan Boopathi
- Division of Urology, University of Pennsylvania, Glenolden, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sathish V, Yang B, Meuchel LW, VanOosten SK, Ryu AJ, Thompson MA, Prakash YS, Pabelick CM. Caveolin-1 and force regulation in porcine airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2011; 300:L920-9. [PMID: 21421751 DOI: 10.1152/ajplung.00322.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Caveolae are specialized membrane microdomains expressing the scaffolding protein caveolin-1. We recently demonstrated the presence of caveolae in human airway smooth muscle (ASM) and the contribution of caveolin-1 to intracellular calcium ([Ca(2+)](i)) regulation. In the present study, we tested the hypothesis that caveolin-1 regulates ASM contractility. We examined the role of caveolins in force regulation of porcine ASM under control conditions as well as TNF-α-induced airway inflammation. In porcine ASM strips, exposure to 10 mM methyl-β-cyclodextrin (CD) or 5 μM of the caveolin-1 specific scaffolding domain inhibitor peptide (CSD) resulted in time-dependent decrease in force responses to 1 μM ACh. Overnight exposure to the cytokine TNF-α (50 ng/ml) accelerated and increased caveolin-1 expression and enhanced force responses to ACh. Suppression of caveolin-1 with small interfering RNA mimicked the effects of CD or CSD. Regarding mechanisms by which caveolae contribute to contractile changes, inhibition of MAP kinase with 10 μM PD98059 did not alter control or TNF-α-induced increases in force responses to ACh. However, inhibiting RhoA with 100 μM fasudil or 10 μM Y27632 resulted in significant decreases in force responses, with lesser effects in TNF-α exposed samples. Furthermore, Ca(2+) sensitivity for force generation was substantially reduced by fasudil or Y27632, an effect even more enhanced in the absence of caveolin-1 signaling. Overall, these results indicate that caveolin-1 is a critical player in enhanced ASM contractility with airway inflammation.
Collapse
Affiliation(s)
- Venkatachalem Sathish
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Shakirova Y, Swärd K, Uvelius B, Ekman M. Biochemical and functional correlates of an increased membrane density of caveolae in hypertrophic rat urinary bladder. Eur J Pharmacol 2010; 649:362-8. [DOI: 10.1016/j.ejphar.2010.09.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/05/2010] [Accepted: 09/07/2010] [Indexed: 11/24/2022]
|