1
|
Wang Y, Ye Z, Wen M, Liang H, Zhang X. TransVFS: A spatio-temporal local-global transformer for vision-based force sensing during ultrasound-guided prostate biopsy. Med Image Anal 2024; 94:103130. [PMID: 38437787 DOI: 10.1016/j.media.2024.103130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Robot-assisted prostate biopsy is a new technology to diagnose prostate cancer, but its safety is influenced by the inability of robots to sense the tool-tissue interaction force accurately during biopsy. Recently, vision based force sensing (VFS) provides a potential solution to this issue by utilizing image sequences to infer the interaction force. However, the existing mainstream VFS methods cannot realize the accurate force sensing due to the adoption of convolutional or recurrent neural network to learn deformation from the optical images and some of these methods are not efficient especially when the recurrent convolutional operations are involved. This paper has presented a Transformer based VFS (TransVFS) method by leveraging ultrasound volume sequences acquired during prostate biopsy. The TransVFS method uses a spatio-temporal local-global Transformer to capture the local image details and the global dependency simultaneously to learn prostate deformations for force estimation. Distinctively, our method explores both the spatial and temporal attention mechanisms for image feature learning, thereby addressing the influence of the low ultrasound image resolution and the unclear prostate boundary on the accurate force estimation. Meanwhile, the two efficient local-global attention modules are introduced to reduce 4D spatio-temporal computation burden by utilizing the factorized spatio-temporal processing strategy, thereby facilitating the fast force estimation. Experiments on prostate phantom and beagle dogs show that our method significantly outperforms existing VFS methods and other spatio-temporal Transformer models. The TransVFS method surpasses the most competitive compared method ResNet3dGRU by providing the mean absolute errors of force estimation, i.e., 70.4 ± 60.0 millinewton (mN) vs 123.7 ± 95.6 mN, on the transabdominal ultrasound dataset of dogs.
Collapse
Affiliation(s)
- Yibo Wang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, No 1037, Luyou Road, Wuhan, China
| | - Zhichao Ye
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 13, Hangkong Road, Wuhan, China
| | - Mingwei Wen
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, No 1037, Luyou Road, Wuhan, China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 13, Hangkong Road, Wuhan, China
| | - Xuming Zhang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, No 1037, Luyou Road, Wuhan, China.
| |
Collapse
|
2
|
Masoumi N, Rivaz H, Hacihaliloglu I, Ahmad MO, Reinertsen I, Xiao Y. The Big Bang of Deep Learning in Ultrasound-Guided Surgery: A Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:909-919. [PMID: 37028313 DOI: 10.1109/tuffc.2023.3255843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Ultrasound (US) imaging is a paramount modality in many image-guided surgeries and percutaneous interventions, thanks to its high portability, temporal resolution, and cost-efficiency. However, due to its imaging principles, the US is often noisy and difficult to interpret. Appropriate image processing can greatly enhance the applicability of the imaging modality in clinical practice. Compared with the classic iterative optimization and machine learning (ML) approach, deep learning (DL) algorithms have shown great performance in terms of accuracy and efficiency for US processing. In this work, we conduct a comprehensive review on deep-learning algorithms in the applications of US-guided interventions, summarize the current trends, and suggest future directions on the topic.
Collapse
|
3
|
Ciocan RA, Graur F, Ciocan A, Cismaru CA, Pintilie SR, Berindan-Neagoe I, Hajjar NA, Gherman CD. Robot-Guided Ultrasonography in Surgical Interventions. Diagnostics (Basel) 2023; 13:2456. [PMID: 37510199 PMCID: PMC10378616 DOI: 10.3390/diagnostics13142456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION The introduction of robotic-guided procedures in surgical techniques has brought an increase in the accuracy and control of resections. Surgery has evolved as a technique since the development of laparoscopy, which has added to the visualisation of the peritoneal cavity from a different perspective. Multi-armed robot associated with real-time intraoperative imaging devices brings important manoeuvrability and dexterity improvements in certain surgical fields. MATERIALS AND METHODS The present study is designed to synthesise the development of imaging techniques with a focus on ultrasonography in robotic surgery in the last ten years regarding abdominal surgical interventions. RESULTS All studies involved abdominal surgery. Out of the seven studies, two were performed in clinical trials. The other five studies were performed on organs or simulators and attempted to develop a hybrid surgical technique using ultrasonography and robotic surgery. Most studies aim to surgically identify both blood vessels and nerve structures through this combined technique (surgery and imaging). CONCLUSIONS Ultrasonography is often used in minimally invasive surgical techniques. This adds to the visualisation of blood vessels, the correct identification of tumour margins, and the location of surgical instruments in the tissue. The development of ultrasound technology from 2D to 3D and 4D has brought improvements in minimally invasive and robotic surgical techniques, and it should be further studied to bring surgery to a higher level.
Collapse
Affiliation(s)
- Răzvan Alexandru Ciocan
- Department of Surgery-Practical Abilities, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, Marinescu Street, No. 23, 400337 Cluj-Napoca, Romania
| | - Florin Graur
- Department of Surgery, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, Croitorilor Street, No. 19-21, 400162 Cluj-Napoca, Romania
| | - Andra Ciocan
- Department of Surgery, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, Croitorilor Street, No. 19-21, 400162 Cluj-Napoca, Romania
| | - Cosmin Andrei Cismaru
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, Victor Babeș Street, No. 8, 400347 Cluj-Napoca, Romania
| | - Sebastian Romeo Pintilie
- "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, Victor Babeș Street, No. 8, 400347 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, Victor Babeș Street, No. 8, 400347 Cluj-Napoca, Romania
| | - Nadim Al Hajjar
- Department of Surgery, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, Croitorilor Street, No. 19-21, 400162 Cluj-Napoca, Romania
| | - Claudia Diana Gherman
- Department of Surgery-Practical Abilities, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, Marinescu Street, No. 23, 400337 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Zhang Y, Yuan Q, Muzzammil HM, Gao G, Xu Y. Image-guided prostate biopsy robots: A review. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:15135-15166. [PMID: 37679175 DOI: 10.3934/mbe.2023678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
At present, the incidence of prostate cancer (PCa) in men is increasing year by year. So, the early diagnosis of PCa is of great significance. Transrectal ultrasonography (TRUS)-guided biopsy is a common method for diagnosing PCa. The biopsy process is performed manually by urologists but the diagnostic rate is only 20%-30% and its reliability and accuracy can no longer meet clinical needs. The image-guided prostate biopsy robot has the advantages of a high degree of automation, does not rely on the skills and experience of operators, reduces the work intensity and operation time of urologists and so on. Capable of delivering biopsy needles to pre-defined biopsy locations with minimal needle placement errors, it makes up for the shortcomings of traditional free-hand biopsy and improves the reliability and accuracy of biopsy. The integration of medical imaging technology and the robotic system is an important means for accurate tumor location, biopsy puncture path planning and visualization. This paper mainly reviews image-guided prostate biopsy robots. According to the existing literature, guidance modalities are divided into magnetic resonance imaging (MRI), ultrasound (US) and fusion image. First, the robot structure research by different guided methods is the main line and the actuators and material research of these guided modalities is the auxiliary line to introduce and compare. Second, the robot image-guided localization technology is discussed. Finally, the image-guided prostate biopsy robot is summarized and suggestions for future development are provided.
Collapse
Affiliation(s)
- Yongde Zhang
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
- Foshan Baikang Robot Technology Co., Ltd, Nanhai District, Foshan City, Guangdong Province 528225, China
| | - Qihang Yuan
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
| | - Hafiz Muhammad Muzzammil
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
| | - Guoqiang Gao
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
| | - Yong Xu
- Department of Urology, the Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100039, China
| |
Collapse
|
5
|
Li Y, Yang C, Bahl A, Persad R, Melhuish C. A review on the techniques used in prostate brachytherapy. COGNITIVE COMPUTATION AND SYSTEMS 2022. [DOI: 10.1049/ccs2.12067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Yanlei Li
- Bristol Robotics Laboratory University of the West of England Bristol UK
| | - Chenguang Yang
- Bristol Robotics Laboratory University of the West of England Bristol UK
| | - Amit Bahl
- University Hospitals Bristol and Weston NHS Trust and Bristol Robotics Laboratory University of the West of England Bristol UK
| | - Raj Persad
- University Hospitals Bristol and Weston NHS Trust and Bristol Robotics Laboratory University of the West of England Bristol UK
| | - Chris Melhuish
- Bristol Robotics Laboratory University of the West of England Bristol UK
| |
Collapse
|
6
|
Wang L, Zhang Y, Zuo S, Xu Y. A review of the research progress of interventional medical equipment and methods for prostate cancer. Int J Med Robot 2021; 17:e2303. [PMID: 34231317 DOI: 10.1002/rcs.2303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Prostate cancer is a common disease in men and has a relatively high mortality rate. However, the interventional medical equipment used for prostate biopsy and brachytherapy has always been a social concern. METHODS To understand interventional medical equipment for prostate cancer, the structure of manual, semi-automatic and automatic medical equipment were considered as the mainline, while the corresponding research on these structures were the auxiliary lines. The characteristics and corresponding research status have been discussed. RESULTS Interventional medical equipment for prostate cancer with different degrees of automation and its characteristics were determined, and the imaging principles and characteristics of computed tomography, transrectal ultrasound and magnetic resonance imaging have been briefly described. CONCLUSION Certain feasible research suggestions have been proposed for future development from the perspective of structure, accuracy and safety. These include flexible and compact robot structures, high-precision image recognition and guidance, accurate dose planning and monitoring, real-time imaging monitoring without delay, high-precision needle insertion strategy, master-slave control, virtual reality and remote control.
Collapse
Affiliation(s)
- Lifeng Wang
- Intelligent Machine Institute, Harbin University of Science and Technology, Harbin, China
| | - Yongde Zhang
- Intelligent Machine Institute, Harbin University of Science and Technology, Harbin, China
| | - Sihao Zuo
- Intelligent Machine Institute, Harbin University of Science and Technology, Harbin, China.,Foshan Baikang Robot Technology Co., Ltd., Foshan, China
| | - Yong Xu
- Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Tan H, Rossa C. Electrical Impedance Tomography for Robot-Aided Internal Radiation Therapy. Front Bioeng Biotechnol 2021; 9:698038. [PMID: 34235139 PMCID: PMC8256893 DOI: 10.3389/fbioe.2021.698038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022] Open
Abstract
High dose rate brachytherapy (HDR) is an internal based radiation treatment for prostate cancer. The treatment can deliver radiation to the site of dominant tumor growth within the prostate. Imaging methods to delineate the dominant tumor are imperative to ensure the maximum success of HDR. This paper investigates the feasibility of using electrical impedance tomography (EIT) as the main imaging modality during robot-aided internal radiation therapy. A procedure utilizing brachytherapy needles in order to perform EIT for the purpose of robot-aided prostate cancer imaging is proposed. It is known that cancerous tissue exhibits different conductivity than healthy tissue. Using this information, it is hypothesized that a conductivity map of the tissue can be used to locate and delineate cancerous nodules via EIT. Multiple experiments were conducted using eight brachytherapy needle electrodes. Observations indicate that the imaging procedure is able to observe differences in tissue conductivity in a setting that approximates transperineal HDR and confirm that brachytherapy needles can be used as electrodes for this purpose. The needles can access the tissue at a specific depth that traditional EIT surface electrodes cannot. The results indicate the feasibility of using brachytherapy needles for EIT for the purpose internal radiation therapy.
Collapse
Affiliation(s)
- Hao Tan
- Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, ON, Canada
| | - Carlos Rossa
- Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, ON, Canada
| |
Collapse
|
8
|
Wilby S, Palmer A, Polak W, Bucchi A. A review of brachytherapy physical phantoms developed over the last 20 years: clinical purpose and future requirements. J Contemp Brachytherapy 2021; 13:101-115. [PMID: 34025743 PMCID: PMC8117707 DOI: 10.5114/jcb.2021.103593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/13/2020] [Indexed: 12/04/2022] Open
Abstract
Within the brachytherapy community, many phantoms are constructed in-house, and less commercial development is observed as compared to the field of external beam. Computational or virtual phantom design has seen considerable growth; however, physical phantoms are beneficial for brachytherapy, in which quality is dependent on physical processes, such as accuracy of source placement. Focusing on the design of physical phantoms, this review paper presents a summary of brachytherapy specific phantoms in published journal articles over the last twenty years (January 1, 2000 - December 31, 2019). The papers were analyzed and tabulated by their primary clinical purpose, which was deduced from their associated publications. A substantial body of work has been published on phantom designs from the brachytherapy community, but a standardized method of reporting technical aspects of the phantoms is lacking. In-house phantom development demonstrates an increasing interest in magnetic resonance (MR) tissue mimicking materials, which is not yet reflected in commercial phantoms available for brachytherapy. The evaluation of phantom design provides insight into the way, in which brachytherapy practice has changed over time, and demonstrates the customised and broad nature of treatments offered.
Collapse
Affiliation(s)
- Sarah Wilby
- Department of Radiotherapy Physics, Clinical Hematology, and Oncology Centre, Portsmouth Hospitals NHS Trust, Cosham, Portsmouth, United Kingdom
- Department of Mechanical Engineering, Faculty of Technology University of Portsmouth, Portsmouth, United Kingdom
| | - Antony Palmer
- Department of Radiotherapy Physics, Clinical Hematology, and Oncology Centre, Portsmouth Hospitals NHS Trust, Cosham, Portsmouth, United Kingdom
- Department of Mechanical Engineering, Faculty of Technology University of Portsmouth, Portsmouth, United Kingdom
| | - Wojciech Polak
- Department of Radiotherapy Physics, Clinical Hematology, and Oncology Centre, Portsmouth Hospitals NHS Trust, Cosham, Portsmouth, United Kingdom
- Department of Mechanical Engineering, Faculty of Technology University of Portsmouth, Portsmouth, United Kingdom
| | - Andrea Bucchi
- Department of Mechanical Engineering, Faculty of Technology University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
9
|
Ortner G, Tzanaki E, Rai BP, Nagele U, Tokas T. Transperineal prostate biopsy: The modern gold standard to prostate cancer diagnosis. Turk J Urol 2020; 47:S19-S26. [PMID: 33052837 DOI: 10.5152/tud.2020.20358] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
In patients suspicious for prostate cancer, a prostate biopsy should be performed. Biopsies are possible either by the transrectal or transperineal routes. Compared with the transrectal prostate biopsy (TRPBx), transperineal prostate biopsy (TPPBx) offers a non-inferior cancer detection rate (CDR), especially in patients undergoing re-biopsy for persistently elevated PSA and in cases of active surveillance (AS), in which TPPBx seems to be superior. Moreover, the transperineal route achieves superior sampling of the anterior and apical regions, especially after previous multiple negative TRPBx. Infectious complications are nullified due to avoidance of needle passage through the rectal mucosa, and there is a highly significant evidence of reduced fever and sepsis rates when compared with TRPBx, with maintaining acceptable urinary retention rates. This is an important upcoming topic due to the increasing antibiotic resistance rates, thus reducing periinterventional hospitalization and health care costs. To date, TPPBx is perfectly feasible in the inpatient and out-patient settings and under local anesthesia, characterized by a moderate learning curve and a good reproducibility. By applying mpMRI as a diagnostic tool, clinically significant prostate cancer (csPCa) detection seems to be comparable to transrectal MRI-fusion biopsy (TR-MRIFBx). Finally, focal treatment of localized disease is currently performed exclusively through a TP approach.
Collapse
Affiliation(s)
- Gernot Ortner
- Department of Urology and Andrology, General Hospital Hall i.T., Hall in Tirol, Austria.,Training and Research in Urological Surgery and Technology (T.R.U.S.T.)-Group
| | - Eirini Tzanaki
- University of Pavia, Medical School, Harvey Course, Pavia, Italy
| | | | - Udo Nagele
- Department of Urology and Andrology, General Hospital Hall i.T., Hall in Tirol, Austria.,Training and Research in Urological Surgery and Technology (T.R.U.S.T.)-Group
| | - Theodoros Tokas
- Department of Urology and Andrology, General Hospital Hall i.T., Hall in Tirol, Austria.,Training and Research in Urological Surgery and Technology (T.R.U.S.T.)-Group
| |
Collapse
|
10
|
Troccaz J, Dagnino G, Yang GZ. Frontiers of Medical Robotics: From Concept to Systems to Clinical Translation. Annu Rev Biomed Eng 2019; 21:193-218. [DOI: 10.1146/annurev-bioeng-060418-052502] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Medical robotics is poised to transform all aspects of medicine—from surgical intervention to targeted therapy, rehabilitation, and hospital automation. A key area is the development of robots for minimally invasive interventions. This review provides a detailed analysis of the evolution of interventional robots and discusses how the integration of imaging, sensing, and robotics can influence the patient care pathway toward precision intervention and patient-specific treatment. It outlines how closer coupling of perception, decision, and action can lead to enhanced dexterity, greater precision, and reduced invasiveness. It provides a critical analysis of some of the key interventional robot platforms developed over the years and their relative merit and intrinsic limitations. The review also presents a future outlook for robotic interventions and emerging trends in making them easier to use, lightweight, ergonomic, and intelligent, and thus smarter, safer, and more accessible for clinical use.
Collapse
Affiliation(s)
- Jocelyne Troccaz
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France
| | - Giulio Dagnino
- The Hamlyn Centre for Robotic Surgery, Imperial College London, London SW7 2AZ, United Kingdom;,
| | - Guang-Zhong Yang
- The Hamlyn Centre for Robotic Surgery, Imperial College London, London SW7 2AZ, United Kingdom;,
| |
Collapse
|
11
|
Antico M, Sasazawa F, Wu L, Jaiprakash A, Roberts J, Crawford R, Pandey AK, Fontanarosa D. Ultrasound guidance in minimally invasive robotic procedures. Med Image Anal 2019; 54:149-167. [DOI: 10.1016/j.media.2019.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/01/2019] [Accepted: 01/09/2019] [Indexed: 12/20/2022]
|
12
|
Pîslă D, Gherman B, Gîrbacia F, Vaida C, Butnariu S, Gîrbacia T, Plitea N. Optimal Planning of Needle Insertion for Robotic-Assisted Prostate Biopsy. ADVANCES IN INTELLIGENT SYSTEMS AND COMPUTING 2016. [DOI: 10.1007/978-3-319-21290-6_34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
Amini A, Westerly DC, Waxweiler TV, Ryan N, Raben D. Dose painting to treat single-lobe prostate cancer with hypofractionated high-dose radiation using targeted external beam radiation: Is it feasible? Med Dosim 2015; 40:256-61. [PMID: 25824420 DOI: 10.1016/j.meddos.2015.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/15/2015] [Accepted: 02/13/2015] [Indexed: 12/25/2022]
Abstract
Targeted focal therapy strategies for treating single-lobe prostate cancer are under investigation. In this planning study, we investigate the feasibility of treating a portion of the prostate to full-dose external beam radiation with reduced dose to the opposite lobe, compared with full-dose radiation delivered to the entire gland using hypofractionated radiation. For 10 consecutive patients with low- to intermediate-risk prostate cancer, 2 hypofractionated, single-arc volumetric-modulated arc therapy (VMAT) plans were designed. The first plan (standard hypofractionation regimen [STD]) included the entire prostate gland, treated to 70 Gy delivered in 28 fractions. The second dose painting plan (DP) encompassed the involved lobe treated to 70 Gy delivered in 28 fractions, whereas the opposing, uninvolved lobe received 50.4 Gy in 28 fractions. Mean dose to the opposing neurovascular bundle (NVB) was considerably lower for DP vs STD, with a mean dose of 53.9 vs 72.3 Gy (p < 0.001). Mean penile bulb dose was 18.6 Gy for DP vs 19.2 Gy for STD (p = 0.880). Mean rectal dose was 21.0 Gy for DP vs 22.8 Gy for STD (p = 0.356). Rectum V70 (the volume receiving ≥70 Gy) was 2.01% for DP vs 2.74% for STD (p = 0.328). Bladder V70 was 1.69% for DP vs 2.78% for STD (p = 0.232). Planning target volume (PTV) maximum dose points were 76.5 and 76.3 Gy for DP and STD, respectively (p = 0.760). This study demonstrates the feasibility of using VMAT for partial-lobe prostate radiation in patients with prostate cancer involving 1 lobe. Partial-lobe prostate plans appeared to spare adjacent critical structures including the opposite NVB.
Collapse
Affiliation(s)
- Arya Amini
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO
| | - David C Westerly
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO
| | - Timothy V Waxweiler
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO
| | - Nicole Ryan
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO
| | - David Raben
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO.
| |
Collapse
|
14
|
Bolla M, Verry C, Giraud JY, Long JA, Conil M, Abidi R, Troccaz J, Colonna M, Descotes JL. Results of a cohort of 200 hormone-naïve consecutive patients with prostate cancer treated with iodine 125 permanent interstitial brachytherapy by the same multidisciplinary team. Cancer Radiother 2014; 18:643-8. [DOI: 10.1016/j.canrad.2014.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/16/2014] [Accepted: 05/20/2014] [Indexed: 11/15/2022]
|
15
|
Cepek J, Lindner U, Ghai S, Louis AS, Davidson SRH, Gertner M, Hlasny E, Sussman MS, Fenster A, Trachtenberg J. Mechatronic system for in-bore MRI-guided insertion of needles to the prostate: An in vivo needle guidance accuracy study. J Magn Reson Imaging 2014; 42:48-55. [PMID: 25195664 DOI: 10.1002/jmri.24742] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/11/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND To present our experiences in initial clinical evaluation of a novel mechatronic system for in-bore guidance of needles to the prostate for MRI-guided prostate interventions in 10 patients. We report accuracy of this device in the context of focal laser ablation therapy for localized prostate cancer. METHODS An MRI-compatible needle guidance device was developed for transperineal prostate interventions. Ten patients underwent MRI-guided focal laser ablation therapy with device-mediated laser fiber delivery. We recorded needle guidance error and needle delivery time. RESULTS A total of 37 needle insertions were evaluated. Median needle guidance error was 3.5 mm (interquartile range, 2.1-5.4 mm), and median needle delivery time was 9 min (interquartile range, 6.5-12 min). CONCLUSION This system provides a reliable method of accurately aligning needle guides for in-bore transperineal needle delivery to the prostate.
Collapse
Affiliation(s)
- Jeremy Cepek
- Department of Surgical Oncology, Division of Urology, University Health Network, Toronto, Canada.,Robarts Research Institute, The University of Western Ontario, London, Canada
| | - Uri Lindner
- Department of Surgical Oncology, Division of Urology, University Health Network, Toronto, Canada
| | - Sangeet Ghai
- Joint Department of Medical Imaging, University Health Network, Toronto, Canada
| | - Alyssa S Louis
- Department of Surgical Oncology, Division of Urology, University Health Network, Toronto, Canada
| | - Sean R H Davidson
- Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Mark Gertner
- Division of Biophysics and Bioimaging, Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Eugen Hlasny
- Joint Department of Medical Imaging, University Health Network, Toronto, Canada
| | - Marshall S Sussman
- Joint Department of Medical Imaging, University Health Network, Toronto, Canada
| | - Aaron Fenster
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Biomedical Engineering, The University of Western Ontario, London, Canada
| | - John Trachtenberg
- Department of Surgical Oncology, Division of Urology, University Health Network, Toronto, Canada
| |
Collapse
|
16
|
Robotic ultrasound and needle guidance for prostate cancer management: review of the contemporary literature. Curr Opin Urol 2014; 24:75-80. [PMID: 24257431 DOI: 10.1097/mou.0000000000000011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To present the recent advances in needle guidance and robotic ultrasound technology which are used for prostate cancer (PCa) diagnosis and management. RECENT FINDINGS Prostate biopsy technology has remained relatively unchanged. Improved needle localization and precision would allow for better management of this common disease. Robotic ultrasound and needle guidance is one strategy to improve needle localization and diagnostic accuracy of PCa. This review focuses on the recent advances in robotic ultrasound and needle guidance technologies, and their potential impact on PCa diagnosis and management. SUMMARY The use of robotic ultrasound and robotic-assisted needle guidance has the potential to improve PCa diagnosis and management.
Collapse
|
17
|
Srimathveeravalli G, Kim C, Petrisor D, Ezell P, Coleman J, Hricak H, Solomon SB, Stoianovici D. MRI-safe robot for targeted transrectal prostate biopsy: animal experiments. BJU Int 2013; 113:977-85. [PMID: 24118992 DOI: 10.1111/bju.12335] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To study the feasibility and safety of using a magnetic resonance imaging (MRI)-safe robot for assisting MRI-guided transrectal needle placement and biopsy in the prostate, using a canine model. To determine the accuracy and precision afforded by the use of the robot while targeting a desired location in the organ. MATERIALS AND METHODS In a study approved by the Institutional Animal Care and Use Committee, six healthy adult male beagles with prostates of at least 15 × 15 mm in size at the largest transverse section were chosen for the procedure. The probe portion of the robot was placed into the rectum of the dog, images were acquired and image-to-robot registration was performed. Images acquired after placement of the robot were reviewed and a radiologist selected targets for needle placement in the gland. Depending on the size of the prostate, up to a maximum of six needle placements were performed on each dog. After needle placement, robot-assisted core biopsies were performed on four dogs that had larger prostate volumes and extracted cores were analysed for potential diagnostic value. RESULTS Robot-assisted MRI-guided needle placements were performed to target a total of 30 locations in six dogs, achieving a targeting accuracy of 2.58 mm (mean) and precision of 1.31 mm (SD). All needle placements were successfully completed on the first attempt. The mean time required to select a desired target location in the prostate, align the needle guide to that point, insert the needle and perform the biopsy was ∼ 3 min. For this targeting accuracy study, the inserted needle was also imaged after its placement in the prostate, which took an additional 6-8 min. Signal-to-noise ratio analysis indicated that the presence of the robot within the scanner bore had minimal impact on the quality of the images acquired. Analysis of intact biopsy core samples indicated that the samples contained prostatic tissues, appropriate for making a potential diagnosis. Dogs used in the study did not experience device- or procedure-related complications. CONCLUSIONS Results from this preclinical pilot animal study suggest that MRI-targeted transrectal biopsies are feasible to perform and this procedure may be safely assisted by an MRI-safe robotic device.
Collapse
|
18
|
Betrouni N, Nevoux P, Leroux B, Colin P, Puech P, Mordon S. An anatomically realistic and adaptable prostate phantom for laser thermotherapy treatment planning. Med Phys 2013; 40:022701. [PMID: 23387771 DOI: 10.1118/1.4788673] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To construct a phantom for prostate cancer laser based thermotherapy treatment planning and simulation. METHODS A realistic and adaptable prostate phantom was designed. It exhibits the following properties: valid and complete description of the prostate anatomy, material with similar optical properties of prostate tissues and compatibility with clinical imaging protocols mainly multiparametric magnetic resonance (MR) and transrectal ultrasound imaging (TRUS). RESULTS Preliminary experiments with the phantom using an interstitial laser treatment protocol allowed obtaining results similar to those obtained on preclinical model. CONCLUSIONS These results proved that this phantom could allow a real simulation of laser therapy procedure: target definition and fibers' placement optimization using MR imaging, treatment delivery, and finally treatment monitoring using TRUS imaging.
Collapse
Affiliation(s)
- N Betrouni
- Inserm, U703, Université Nord de France, Loos, France.
| | | | | | | | | | | |
Collapse
|
19
|
Ridout AJ, Kasivisvanathan V, Emberton M, Moore CM. Role of magnetic resonance imaging in defining a biopsy strategy for detection of prostate cancer. Int J Urol 2013; 21:5-11. [DOI: 10.1111/iju.12259] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/17/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Ashley J Ridout
- Division of Surgical and Interventional Sciences; University College London; London UK
- Department of Urology; University College London Hospitals NHS Foundation Trust; London UK
| | - Veeru Kasivisvanathan
- Division of Surgical and Interventional Sciences; University College London; London UK
- Department of Urology; University College London Hospitals NHS Foundation Trust; London UK
| | - Mark Emberton
- Division of Surgical and Interventional Sciences; University College London; London UK
- Department of Urology; University College London Hospitals NHS Foundation Trust; London UK
| | - Caroline M Moore
- Division of Surgical and Interventional Sciences; University College London; London UK
- Department of Urology; University College London Hospitals NHS Foundation Trust; London UK
| |
Collapse
|
20
|
Abstract
Robotic prostatectomy is a common surgical treatment for men with prostate cancer, with some studies estimating that 80% of prostatectomies now performed in the USA are done so robotically. Despite the technical advantages offered by robotic systems, functional and oncological outcomes of prostatectomy can still be improved further. Alternative minimally invasive treatments that have also adopted robotic platforms include brachytherapy and high-intensity focused ultrasonography (HIFU). These techniques require real-time image guidance--such as ultrasonography or MRI--to be truly effective; issues with software compatibility as well as image registration and tracking currently limit such technologies. However, image-guided robotics is a fast-growing area of research that combines the improved ergonomics of robotic systems with the improved visualization of modern imaging modalities. Although the benefits of a real-time image-guided robotic system to improve the precision of surgical interventions are being realized, the clinical usefulness of many of these systems remains to be seen.
Collapse
|
21
|
Valerio M, Ahmed HU, Emberton M, Lawrentschuk N, Lazzeri M, Montironi R, Nguyen PL, Trachtenberg J, Polascik TJ. The role of focal therapy in the management of localised prostate cancer: a systematic review. Eur Urol 2013; 66:732-51. [PMID: 23769825 PMCID: PMC4179888 DOI: 10.1016/j.eururo.2013.05.048] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/24/2013] [Indexed: 12/17/2022]
Abstract
CONTEXT The incidence of localised prostate cancer is increasing worldwide. In light of recent evidence, current, radical, whole-gland treatments for organ-confined disease have being questioned with respect to their side effects, cancer control, and cost. Focal therapy may be an effective alternative strategy. OBJECTIVE To systematically review the existing literature on baseline characteristics of the target population; preoperative evaluation to localise disease; and perioperative, functional, and disease control outcomes following focal therapy. EVIDENCE ACQUISITION Medline (through PubMed), Embase, Web of Science, and Cochrane Review databases were searched from inception to 31 October 2012. In addition, registered but not yet published trials were retrieved. Studies evaluating tissue-preserving therapies in men with biopsy-proven prostate cancer in the primary or salvage setting were included. EVIDENCE SYNTHESIS A total of 2350 cases were treated to date across 30 studies. Most studies were retrospective with variable standards of reporting, although there was an increasing number of prospective registered trials. Focal therapy was mainly delivered to men with low and intermediate disease, although some high-risk cases were treated that had known, unilateral, significant cancer. In most of the cases, biopsy findings were correlated to specific preoperative imaging, such as multiparametric magnetic resonance imaging or Doppler ultrasound to determine eligibility. Follow-up varied between 0 and 11.1 yr. In treatment-naïve prostates, pad-free continence ranged from 95% to 100%, erectile function ranged from 54% to 100%, and absence of clinically significant cancer ranged from 83% to 100%. In focal salvage cases for radiotherapy failure, the same outcomes were achieved in 87.2-100%, 29-40%, and 92% of cases, respectively. Biochemical disease-free survival was reported using a number of definitions that were not validated in the focal-therapy setting. CONCLUSIONS Our systematic review highlights that, when focal therapy is delivered with intention to treat, the perioperative, functional, and disease control outcomes are encouraging within a short- to medium-term follow-up. Focal therapy is a strategy by which the overtreatment burden of the current prostate cancer pathway could be reduced, but robust comparative effectiveness studies are now required.
Collapse
Affiliation(s)
- Massimo Valerio
- Division of Surgery and Interventional Science, University College London, London, UK; Department of Urology, University College Hospitals NHS Foundation Trust, London, UK; Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | - Hashim U Ahmed
- Division of Surgery and Interventional Science, University College London, London, UK; Department of Urology, University College Hospitals NHS Foundation Trust, London, UK
| | - Mark Emberton
- Division of Surgery and Interventional Science, University College London, London, UK; Department of Urology, University College Hospitals NHS Foundation Trust, London, UK
| | - Nathan Lawrentschuk
- Department of Surgery, University of Melbourne; and Ludwig Institute for Cancer Research, Austin Hospital, Melbourne, Australia
| | - Massimo Lazzeri
- Department of Urology, Ospedale San Raffaele Turro, San Raffaele Scientific Institute, Milan, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Paul L Nguyen
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Centre, Harvard Medical School, Boston, MA, USA
| | - John Trachtenberg
- Division of Urology, Department of Surgical Oncology, University Health Network; and Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Thomas J Polascik
- Division of Urology, Department of Surgery, and Duke Cancer Institute, Duke University Medical Centre, Durham, NC, USA
| |
Collapse
|
22
|
Fiard G, Descotes JL, Rambeaud JJ, Hohn N, Troccaz J, Long JA. Biopsies prostatiques ciblées guidées par IRM dans le diagnostic du cancer de prostate : revue de la littérature. Prog Urol 2012; 22:903-12. [DOI: 10.1016/j.purol.2012.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 04/13/2012] [Accepted: 06/06/2012] [Indexed: 12/01/2022]
|
23
|
Andersson KE. This Month in Investigative Urology. J Urol 2012. [DOI: 10.1016/j.juro.2012.07.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
|