1
|
Mansfield KJ, Chen Z, Ognenovska S, Briggs N, Sluyter R, Moore KH. A Cross Sectional Study of Cytokines in Women with Refractory Detrusor Overactivity versus Controls. Int Urogynecol J 2024:10.1007/s00192-024-05999-7. [PMID: 39560765 DOI: 10.1007/s00192-024-05999-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024]
Abstract
INTRODUCTION AND HYPOTHESIS Previous work has suggested that refractory detrusor overactivity (DO) was commonly associated with urinary tract infection (UTI), which can lead to inflammatory changes in the bladder. This study aimed to investigate the concentrations of urinary cytokines in a large sample of women with refractory detrusor overactivity (DO) and age matched controls. METHODS The urinary concentration of 27 cytokines in 140 women (95 with refractory DO and 45 age matched controls (women without urge incontinence)) was determined using the Human Cytokine 27-plex Assay. Cytokine concentrations were correlated with a "UTI score", the presence or absence of bacteriuria or pyuria on the day of sample collection and a previous history of UTI. RESULTS Pro-inflammatory cytokines were increased in refractory DO women compared to the controls. In women with refractory DO, the UTI score significantly correlated with urinary cytokine concentrations in 15 of the 22 cytokines detected. A previous history of UTI did not affect urinary cytokine concentrations in refractory DO women with no current UTI. Increasing pyuria was associated with increasing concentrations of urinary cytokines. CONCLUSION Careful comparison of cytokine concentrations in women with refractory DO versus age matched controls has shown that changes in pro-inflammatory cytokines are related to the UTI disease burden, suggesting that an underlying inflammatory response, together with UTI, may be an aetiological contributor to the development of refractory DO.
Collapse
Affiliation(s)
- Kylie J Mansfield
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Zhuoran Chen
- Department of Urogynaecology, St George Hospital, University of New South Wales, Kogarah, NSW, Australia
| | - Samantha Ognenovska
- Department of Urogynaecology, St George Hospital, University of New South Wales, Kogarah, NSW, Australia
| | - Nancy Briggs
- University of New South Wales, Kensington, NSW, Australia
| | - Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Biosciences, University of Wollongong, Wollongong, NSW, Australia
| | - Kate H Moore
- Department of Urogynaecology, St George Hospital, University of New South Wales, Kogarah, NSW, Australia
| |
Collapse
|
2
|
Kaisu L, Songlin Y, Wu S, Ying Z, Wang L, Potapov A, Yu X, Sun Y, Sun N, Zhu M. Portable and Recyclable Luminescent Lanthanide Coordination Polymer Film Sensors for Adenosine Triphosphate in Urine. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5129-5137. [PMID: 38227932 DOI: 10.1021/acsami.3c16504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Adenosine triphosphate (ATP) is a small molecule that is released to the urine from bladder urothelial cells and the bladder mucosal band of the human body. In certain cases, ATP can serve as a biomarker in bladder disease. For the practical applicability of luminescent sensors for ATP in urine, it is significant to find a new strategy for making the detection progress simple and available for in-field urine analysis. Here, a novel luminescent lanthanide coordination polymer (Tb-BPA) was designed and synthesized for quick and sensitive detection of ATP through luminescence quenching with a quenching constant of 4.90 × 103 M-1 and a detection limit of 0.55 × 10-6 M. Besides, Tb-BPA has excellent anti-interference ability and can detect ATP in simulated urine with a small relative standard deviation (<4%). Moreover, the luminescent polyacrylonitrile nanofiber films modified by Tb-BPA were prepared by electrospinning and were used for ATP visual detection. Notably, this film is easy to recover and reuse, and maintains good detection performance after at least 7 cycles.
Collapse
Affiliation(s)
- Li Kaisu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Yang Songlin
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Shuangyan Wu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Zhang Ying
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Lei Wang
- Center of Physical Chemistry Test, Shenyang University of Chemical Technology, Shenyang, Liaoning, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Andrei Potapov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Xiaolin Yu
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Yaguang Sun
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Na Sun
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - MingChang Zhu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| |
Collapse
|
3
|
Urinary ATP Levels Are Controlled by Nucleotidases Released from the Urothelium in a Regulated Manner. Metabolites 2022; 13:metabo13010030. [PMID: 36676954 PMCID: PMC9862892 DOI: 10.3390/metabo13010030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Adenosine 5′-triphosphate (ATP) is released in the bladder lumen during filling. Urothelial ATP is presumed to regulate bladder excitability. Urinary ATP is suggested as a urinary biomarker of bladder dysfunctions since ATP is increased in the urine of patients with overactive bladder, interstitial cystitis or bladder pain syndrome. Altered urinary ATP might also be associated with voiding dysfunctions linked to disease states associated with metabolic syndrome. Extracellular ATP levels are determined by ATP release and ATP hydrolysis by membrane-bound and soluble nucleotidases (s-NTDs). It is currently unknown whether s-NTDs regulate urinary ATP. Using etheno-ATP substrate and HPLC-FLD detection techniques, we found that s-NTDs are released in the lumen of ex vivo mouse detrusor-free bladders. Capillary immunoelectrophoresis by ProteinSimple Wes determined that intraluminal solutions (ILS) collected at the end of filling contain ENTPD3 > ENPP1 > ENPP3 ≥ ENTPD2 = NT5E = ALPL/TNAP. Activation of adenylyl cyclase with forskolin increased luminal s-NTDs release whereas the AC inhibitor SQ22536 had no effect. In contrast, forskolin reduced and SQ22536 increased s-NTDs release in the lamina propria. Adenosine enhanced s-NTDs release and accelerated ATP hydrolysis in ILS and lamina propria. Therefore, there is a regulated release of s-NTDs in the bladder lumen during filling. Aberrant release or functions of urothelial s-NTDs might cause elevated urinary ATP in conditions with abnormal bladder excitability.
Collapse
|
4
|
Mansfield KJ, Chen Z, Moore KH, Grundy L. Urinary Tract Infection in Overactive Bladder: An Update on Pathophysiological Mechanisms. Front Physiol 2022; 13:886782. [PMID: 35860658 PMCID: PMC9289139 DOI: 10.3389/fphys.2022.886782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Overactive bladder (OAB) is a clinical syndrome defined by urinary urgency, increased daytime urinary frequency and/or nocturia, with or without urinary incontinence, that affects approximately 11% of the western population. OAB is accepted as an idiopathic disorder, and is charactersied clinically in the absence of other organic diseases, including urinary tract infection. Despite this, a growing body of research provides evidence that a significant proportion of OAB patients have active bladder infection. This review discusses the key findings of recent laboratory and clinical studies, providing insight into the relationship between urinary tract infection, bladder inflammation, and the pathophysiology of OAB. We summarise an array of clinical studies that find OAB patients are significantly more likely than control patients to have pathogenic bacteria in their urine and increased bladder inflammation. This review reveals the complex nature of OAB, and highlights key laboratory studies that have begun to unravel how urinary tract infection and bladder inflammation can induce urinary urgency and urinary frequency. The evidence presented in this review supports the concept that urinary tract infection may be an underappreciated contributor to the pathophysiology of some OAB patients.
Collapse
Affiliation(s)
- Kylie J. Mansfield
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Zhuoran Chen
- Department of Urogynaecology, St George Hospital, University of New South Wales, Kogarah, NSW, Australia
| | - Kate H. Moore
- Department of Urogynaecology, St George Hospital, University of New South Wales, Kogarah, NSW, Australia
| | - Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- *Correspondence: Luke Grundy,
| |
Collapse
|
5
|
Innate immune response to bacterial urinary tract infection sensitises high-threshold bladder afferents and recruits silent nociceptors. Pain 2019; 161:202-210. [DOI: 10.1097/j.pain.0000000000001692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Urinary tract infections are common in the field of urogynaecology. Women with persistent urinary symptoms seem more likely to have bacteriuria despite negative cultures. In this review, we will give an overview of the recent insights on the relationship between urinary tract infection and persistent urinary symptoms and possible new therapeutic options. RECENT FINDINGS Recently published articles evaluated the prevalence of low-count bacteriuria (≥10 CFU/ml) or intracellular bacterial communities in women with overactive bladder symptoms (OAB). Differences in urinary microbioma observed in women with and without OAB symptoms were evaluated. In the light of these findings, current screening strategies were discussed and alternative screening methods for bacteriuria developed. SUMMARY Low-count bacteriuria (≥10 CFU/ml) seems to be more prevalent in women with OAB. Also intracellular bacterial communities are more commonly detected in these women. The microbioma found in women with urinary symptoms appeared to differ from healthy controls. The current screening methods might be insufficient as they are targeted at detecting uropathogenic Escherichia coli, mostly using a detection threshold of at least 10 CFU/ml and failing to detect intracellular bacterial communities. Studies evaluating the efficacy of treating women with low-count bacteriuria are limited but promising.
Collapse
|
8
|
Mutafova-Yambolieva VN, Durnin L. The purinergic neurotransmitter revisited: a single substance or multiple players? Pharmacol Ther 2014; 144:162-91. [PMID: 24887688 PMCID: PMC4185222 DOI: 10.1016/j.pharmthera.2014.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
Abstract
The past half century has witnessed tremendous advances in our understanding of extracellular purinergic signaling pathways. Purinergic neurotransmission, in particular, has emerged as a key contributor in the efficient control mechanisms in the nervous system. The identity of the purine neurotransmitter, however, remains controversial. Identifying it is difficult because purines are present in all cell types, have a large variety of cell sources, and are released via numerous pathways. Moreover, studies on purinergic neurotransmission have relied heavily on indirect measurements of integrated postjunctional responses that do not provide direct information for neurotransmitter identity. This paper discusses experimental support for adenosine 5'-triphosphate (ATP) as a neurotransmitter and recent evidence for possible contribution of other purines, in addition to or instead of ATP, in chemical neurotransmission in the peripheral, enteric and central nervous systems. Sites of release and action of purines in model systems such as vas deferens, blood vessels, urinary bladder and chromaffin cells are discussed. This is preceded by a brief discussion of studies demonstrating storage of purines in synaptic vesicles. We examine recent evidence for cell type targets (e.g., smooth muscle cells, interstitial cells, neurons and glia) for purine neurotransmitters in different systems. This is followed by brief discussion of mechanisms of terminating the action of purine neurotransmitters, including extracellular nucleotide hydrolysis and possible salvage and reuptake in the cell. The significance of direct neurotransmitter release measurements is highlighted. Possibilities for involvement of multiple purines (e.g., ATP, ADP, NAD(+), ADP-ribose, adenosine, and diadenosine polyphosphates) in neurotransmission are considered throughout.
Collapse
Affiliation(s)
| | - Leonie Durnin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, United States
| |
Collapse
|
9
|
Moore KH, Malykhina AP. What is the role of covert infection in detrusor overactivity, and other LUTD? ICI-RS 2013. Neurourol Urodyn 2014; 33:606-10. [DOI: 10.1002/nau.22589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/25/2014] [Indexed: 01/26/2023]
Affiliation(s)
- Kate H. Moore
- Pelvic Floor Unit; Department of Urogynaecology; University of New South Wales; Sydney NSW Australia
| | - Anna P. Malykhina
- Division of Urology; Department of Surgery; University of Pennsylvania; Philadelphia Pennsylvania
| |
Collapse
|
10
|
Burnstock G. Purinergic signalling in the urinary tract in health and disease. Purinergic Signal 2014; 10:103-55. [PMID: 24265069 PMCID: PMC3944045 DOI: 10.1007/s11302-013-9395-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/25/2022] Open
Abstract
Purinergic signalling is involved in a number of physiological and pathophysiological activities in the lower urinary tract. In the bladder of laboratory animals there is parasympathetic excitatory cotransmission with the purinergic and cholinergic components being approximately equal, acting via P2X1 and muscarinic receptors, respectively. Purinergic mechanosensory transduction occurs where ATP, released from urothelial cells during distension of bladder and ureter, acts on P2X3 and P2X2/3 receptors on suburothelial sensory nerves to initiate the voiding reflex, via low threshold fibres, and nociception, via high threshold fibres. In human bladder the purinergic component of parasympathetic cotransmission is less than 3 %, but in pathological conditions, such as interstitial cystitis, obstructed and neuropathic bladder, the purinergic component is increased to 40 %. Other pathological conditions of the bladder have been shown to involve purinoceptor-mediated activities, including multiple sclerosis, ischaemia, diabetes, cancer and bacterial infections. In the ureter, P2X7 receptors have been implicated in inflammation and fibrosis. Purinergic therapeutic strategies are being explored that hopefully will be developed and bring benefit and relief to many patients with urinary tract disorders.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
11
|
Atala A. Re: Loss of β1-Integrin from Urothelium Results in Overactive Bladder and Incontinence in Mice: A Mechanosensory Rather than Structural Phenotype. J Urol 2013; 190:2305. [DOI: 10.1016/j.juro.2013.08.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
McDermott C, Chess-Williams R, Mills K, Kang S, Farr S, Grant G, Perkins A, Davey A, Anoopkumar-Dukie S. Alterations in acetylcholine, PGE2 and IL6 release from urothelial cells following treatment with pyocyanin and lipopolysaccharide. Toxicol In Vitro 2013; 27:1693-8. [DOI: 10.1016/j.tiv.2013.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/27/2013] [Accepted: 04/20/2013] [Indexed: 10/26/2022]
|