1
|
Streltsova O, Antonyan A, Ignatova N, Yunusova K, Elagin V, Kamensky V. Preclinical Studies on the Safety and Toxicity of Photoditazine in the Antibacterial Photodynamic Therapy of Uropathogenic Bacteria. Biomedicines 2023; 11:2283. [PMID: 37626779 PMCID: PMC10452507 DOI: 10.3390/biomedicines11082283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The 'dusting' technique of lithotripsy for the removal of infected urinary calculi and the wide use of drainage after endoscopic surgery may stimulate spreading of multidrug-resistant bacterial strains. Antibacterial photodynamic therapy (PDT) is one promising method for the elimination these strains. The purpose of our study was to evaluate alterations of renal pelvis morphology and renal function in laboratory animals after bactericidal regimens of PDT. Renal pelvises of pigs were filled with Photoditazine and then assessed either by examining the accumulation of Photoditazine in the urothelium or by illumination with a laser at a wavelength of 662 nm. A renal test and a complete blood count was performed to assess a negative effect of the treatment on health. Structural alterations of the kidney tissues were analyzed by histological examination. No photosensitizer fluorescence was detected in the urothelium of the pelvis. Histological study showed that PDT caused minor changes to the urothelium of the renal pelvis but did not affect the underlying connective tissue. No renal function abnormalities were found after PDT. Thus, the study indicates that antibacterial PDT is a safety technique that can complement common antibiotic therapy in the surgical treatment of urolithiasis.
Collapse
Affiliation(s)
- Olga Streltsova
- Department of Urology Named after E. V. Shakhov, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia;
| | - Artem Antonyan
- Department of Urology Named after E. V. Shakhov, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia;
| | - Nadezhda Ignatova
- Department of Epidemiology, Microbiology and Evidence-Based Medicine, Privolzhsky Research Medical University, 603004 Nizhny Novgorod, Russia;
| | - Katerina Yunusova
- Department of Pathological Anatomy, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia;
| | - Vadim Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (V.E.); (V.K.)
| | - Vladislav Kamensky
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (V.E.); (V.K.)
- Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| |
Collapse
|
2
|
Yip W, Sjoberg DD, Nogueira LM, Tracey AT, Alvim RG, Reisz PA, Demac Q, Benfante NE, Vanden Berg RW, Kim K, Al-Ahmadie H, Lin O, Bochner BH, Dalbagni G, Donat SM, Pietzak EJ, Hakimi AA, Solit DB, Scherz A, Bajorin DF, Coleman JA. Final Results of a Phase I Trial of WST-11 (TOOKAD Soluble) Vascular-targeted Photodynamic Therapy for Upper Tract Urothelial Carcinoma. J Urol 2023; 209:863-871. [PMID: 36724067 PMCID: PMC10265489 DOI: 10.1097/ju.0000000000003202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/24/2023] [Indexed: 02/02/2023]
Abstract
PURPOSE Vascular-targeted photodynamic therapy with the intravascular photosensitizing agent padeliporfin (WST-11/TOOKAD-Soluble) has demonstrated therapeutic efficacy as an ablative treatment for localized cancer with potential adaptation for endoscopic management of upper tract urothelial carcinoma. This Phase I trial (NCT03617003) evaluated the safety of vascular-targeted photodynamic therapy with WST-11 in upper tract urothelial carcinoma. MATERIALS AND METHODS Nineteen patients underwent up to 2 endoscopic vascular-targeted photodynamic therapy treatments, with follow-up for up to 6 months. Patients who had residual or recurrent upper tract urothelial carcinoma (any grade/size) failing prior endoscopic treatment or unable or unwilling to undergo surgical resection were eligible for inclusion. The primary endpoint was to identify the maximally tolerated dose of laser light fluence. A dose escalation model was employed, with increasing light fluence (100-200 mW/cm) using a modified continual reassessment method. The secondary endpoint was treatment efficacy, defined by absence of visible tumor and negative urine cytology 30 days posttreatment. RESULTS Fourteen (74%) patients received the maximally tolerated dose of 200 mW/cm, 2 (11%) of whom experienced a dose-limiting toxicity. The initial 30-day treatment response rate was 94% (50% complete, 44% partial). Eight patients underwent a second treatment, with a final observed 68% complete response rate. Leading toxicities were flank pain (79%) and hematuria (84%), which were transient. No ureteral strictures associated with treatment were identified during follow-up. CONCLUSIONS Vascular-targeted photodynamic therapy with WST-11 has an acceptable safety profile with strong potential as an effective, kidney-sparing endoscopic management option for upper tract urothelial carcinoma. The recently initiated multicenter Phase 3 ENLIGHTED trial (NCT04620239) is expected to provide further evidence on this therapy.
Collapse
Affiliation(s)
- Wesley Yip
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel D Sjoberg
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lucas M Nogueira
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew T Tracey
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ricardo G Alvim
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Peter A Reisz
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Quinlan Demac
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nicole E Benfante
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rand W Vanden Berg
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kwanghee Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hikmat Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Oscar Lin
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bernard H Bochner
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Guido Dalbagni
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - S Machele Donat
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eugene J Pietzak
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - A Ari Hakimi
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David B Solit
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Dean F Bajorin
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jonathan A Coleman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
3
|
Kimura Y, Fujimori M, Rajagopalan NR, Poudel K, Kim K, Nagar K, Vroomen LGPH, Reis H, Al-Ahmadie H, Coleman JA, Srimathveeravalli G. Macrophage activity at the site of tumor ablation can promote murine urothelial cancer via transforming growth factor-β1. Front Immunol 2023; 14:1070196. [PMID: 36761730 PMCID: PMC9902765 DOI: 10.3389/fimmu.2023.1070196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/02/2023] [Indexed: 01/26/2023] Open
Abstract
Cell death and injury at the site of tumor ablation attracts macrophages. We sought to understand the status and activity of these cells while focusing on transforming growth factor-β1 (TGF-β1), a potent immunosuppressive and tumorigenic cytokine. Patients with urothelial cancer who underwent ablation using electrocautery or laser demonstrated increased infiltration and numbers of CD8+ T cells, along with FoxP3+ regulatory T cells, CD68+ macrophages and elevated levels of TGF-β1 in recurrent tumors. Similar findings were reproduced in a mouse model of urothelial cancer (MB49) by partial tumor ablation with irreversible electroporation (IRE). Stimulation of bone marrow derived macrophages with MB49 cell debris produced using IRE elicited strong M2 polarization, with exuberant secretion of TGF-β1. The motility, phenotypic markers and cytokine secretion by macrophages could be muted by treatment with Pirfenidone (PFD), a clinically approved drug targeting TGF-β1 signaling. MB49 cancer cells exposed to TGF-β1 exhibited increased migration, invasiveness and upregulation of epithelial-mesenchymal transition markers α-Smooth Muscle Actin and Vimentin. Such changes in MB49 cells were reduced by treatment with PFD even during stimulation with TGF-β1. IRE alone yielded better local tumor control when compared with control or PFD alone, while also reducing the overall number of lung metastases. Adjuvant PFD treatment did not provide additional benefit under in vivo conditions.
Collapse
Affiliation(s)
- Yasushi Kimura
- Department of Diagnosis and Interventional Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Dept. of Mechanical and Industrial Engineering, University of Massachusetts Amherst,
Amherst, MA, United States
| | | | | | - Krish Poudel
- Dept. of Mechanical and Industrial Engineering, University of Massachusetts Amherst,
Amherst, MA, United States
| | - Kwanghee Kim
- Division of Urology, Department of Surgery, Memorial Sloan Kettering Cancer Center,
New York, NY, United States
| | - Karan Nagar
- Division of Urology, Department of Surgery, Memorial Sloan Kettering Cancer Center,
New York, NY, United States
| | - Laurien GPH. Vroomen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Henning Reis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Hikmat Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jonathan A. Coleman
- Division of Urology, Department of Surgery, Memorial Sloan Kettering Cancer Center,
New York, NY, United States
| | - Govindarajan Srimathveeravalli
- Dept. of Mechanical and Industrial Engineering, University of Massachusetts Amherst,
Amherst, MA, United States
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
4
|
Yu R, Maswikiti EP, Yu Y, Gao L, Ma C, Ma H, Deng X, Wang N, Wang B, Chen H. Advances in the Application of Preclinical Models in Photodynamic Therapy for Tumor: A Narrative Review. Pharmaceutics 2023; 15:pharmaceutics15010197. [PMID: 36678826 PMCID: PMC9867105 DOI: 10.3390/pharmaceutics15010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023] Open
Abstract
Photodynamic therapy (PDT) is a non-invasive laser light local treatment that has been utilized in the management of a wide variety of solid tumors. Moreover, the evaluation of efficacy, adverse reactions, the development of new photosensitizers and the latest therapeutic regimens are inseparable from the preliminary exploration in preclinical studies. Therefore, our aim was to better comprehend the characteristics and limitations of these models and to provide a reference for related research. METHODS We searched the databases, including PubMed, Web of Science and Scopus for the past 25 years of original research articles on the feasibility of PDT in tumor treatment based on preclinical experiments and animal models. We provided insights into inclusion and exclusion criteria and ultimately selected 40 articles for data synthesis. RESULTS After summarizing and comparing the methods and results of these studies, the experimental model selection map was drawn. There are 7 main preclinical models, which are used for different research objectives according to their characteristics. CONCLUSIONS Based on this narrative review, preclinical experimental models are crucial to the development and promotion of PDT for tumors. The traditional animal models have some limitations, and the emergence of organoids may be a promising new insight.
Collapse
Affiliation(s)
- Rong Yu
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | | | - Yang Yu
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Lei Gao
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Chenhui Ma
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Huanhuan Ma
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Xiaobo Deng
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Na Wang
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Bofang Wang
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Hao Chen
- Department of Surgical Oncology, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumor of Gansu Province, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Correspondence: ; Tel.: +86-0931-5190550
| |
Collapse
|
5
|
Ferraro MG, Piccolo M, Misso G, Santamaria R, Irace C. Bioactivity and Development of Small Non-Platinum Metal-Based Chemotherapeutics. Pharmaceutics 2022; 14:pharmaceutics14050954. [PMID: 35631543 PMCID: PMC9147010 DOI: 10.3390/pharmaceutics14050954] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Countless expectations converge in the multidisciplinary endeavour for the search and development of effective and safe drugs in fighting cancer. Although they still embody a minority of the pharmacological agents currently in clinical use, metal-based complexes have great yet unexplored potential, which probably hides forthcoming anticancer drugs. Following the historical success of cisplatin and congeners, but also taking advantage of conventional chemotherapy limitations that emerged with applications in the clinic, the design and development of non-platinum metal-based chemotherapeutics, either as drugs or prodrugs, represents a rapidly evolving field wherein candidate compounds can be fine-tuned to access interactions with druggable biological targets. Moving in this direction, over the last few decades platinum family metals, e.g., ruthenium and palladium, have been largely proposed. Indeed, transition metals and molecular platforms where they originate are endowed with unique chemical and biological features based on, but not limited to, redox activity and coordination geometries, as well as ligand selection (including their inherent reactivity and bioactivity). Herein, current applications and progress in metal-based chemoth are reviewed. Converging on the recent literature, new attractive chemotherapeutics based on transition metals other than platinum—and their bioactivity and mechanisms of action—are examined and discussed. A special focus is committed to anticancer agents based on ruthenium, palladium, rhodium, and iridium, but also to gold derivatives, for which more experimental data are nowadays available. Next to platinum-based agents, ruthenium-based candidate drugs were the first to reach the stage of clinical evaluation in humans, opening new scenarios for the development of alternative chemotherapeutic options to treat cancer.
Collapse
Affiliation(s)
- Maria Grazia Ferraro
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Marialuisa Piccolo
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Gabriella Misso
- Department of Precision Medicine, School of Medicine and Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: (G.M.); (C.I.)
| | - Rita Santamaria
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Carlo Irace
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
- Correspondence: (G.M.); (C.I.)
| |
Collapse
|
6
|
Ding L, Dong HY, Zhou TR, Wang YH, Yan T, Li JC, Wang ZY, Li J, Liang C. PD-1/PD-L1 inhibitors-based treatment for advanced renal cell carcinoma: Mechanisms affecting efficacy and combination therapies. Cancer Med 2021; 10:6384-6401. [PMID: 34382349 PMCID: PMC8446416 DOI: 10.1002/cam4.4190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/14/2022] Open
Abstract
With the widespread use of PD-1/PD-L1 monoclonal antibodies (mAbs) in the treatment of multiple malignant tumors, they were also gradually applied to advanced renal cell carcinoma (aRCC). Nowadays, multiple PD-1/PD-L1 mAbs, such as nivolumab, avelumab, and pembrolizumab, have achieved considerable efficacy in clinical trials. However, due to the primary, adaptive, and acquired resistance to these mAbs, the efficacy of this immunotherapy is not satisfactory. Theories also vary as to why the difference in efficacy occurs. The alterations of PD-L1 expression and the interference of cellular immunity may affect the efficacy. These mechanisms demand to be revealed to achieve a sustained and complete objective response in patients with aRCC. Tyrosine kinase inhibitors have been proven to have synergistic mechanisms with PD-1/PD-L1 mAb in the treatment of aRCC, and CTLA-4 mAb has been shown to have a non-redundant effect with PD-1/PD-L1 mAb to enhance efficacy. Although combinations with targeted agents or other checkpoint mAbs have yielded enhanced clinical outcomes in multiple clinical trials nowadays, the potential of PD-1/PD-L1 mAbs still has a large development space. More potential mechanisms that affect the efficacy demand to be developed and transformed into the clinical treatment of aRCC to search for possible combination regimens. We elucidate these mechanisms in RCC and present existing combination therapies applied in clinical trials. This may help physicians' select treatment options for patients with refractory kidney cancer.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/metabolism
- Carcinoma, Renal Cell/diagnosis
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/mortality
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/immunology
- Drug Screening Assays, Antitumor
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Kidney Neoplasms/diagnosis
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/immunology
- Kidney Neoplasms/mortality
- Mutation
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/metabolism
- Progression-Free Survival
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Lei Ding
- Department of UrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Hui yu Dong
- Department of UrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Tian ren Zhou
- Department of UrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yu hao Wang
- Department of UrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Tao Yan
- Department of UrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jun chen Li
- Department of UrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhong yuan Wang
- Department of UrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jie Li
- Department of UrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Chao Liang
- Department of UrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
7
|
Combined OX40 Agonist and PD-1 Inhibitor Immunotherapy Improves the Efficacy of Vascular Targeted Photodynamic Therapy in a Urothelial Tumor Model. Molecules 2021; 26:molecules26123744. [PMID: 34205347 PMCID: PMC8234268 DOI: 10.3390/molecules26123744] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Vascular targeted photodynamic therapy (VTP) is a nonsurgical tumor ablation approach used to treat early-stage prostate cancer and may also be effective for upper tract urothelial cancer (UTUC) based on preclinical data. Toward increasing response rates to VTP, we evaluated its efficacy in combination with concurrent PD-1 inhibitor/OX40 agonist immunotherapy in a urothelial tumor-bearing model. EXPERIMENTAL DESIGN In mice allografted with MB-49 UTUC cells, we compared the effects of combined VTP with PD-1 inhibitor/OX40 agonist with those of the component treatments on tumor growth, survival, lung metastasis, and antitumor immune responses. RESULTS The combination of VTP with both PD-1 inhibitor and OX40 agonist inhibited tumor growth and prolonged survival to a greater degree than VTP with either immunotherapeutic individually. These effects result from increased tumor infiltration and intratumoral proliferation of cytotoxic and helper T cells, depletion of Treg cells, and suppression of myeloid-derived suppressor cells. CONCLUSIONS Our findings suggest that VTP synergizes with PD-1 blockade and OX40 agonist to promote strong antitumor immune responses, yielding therapeutic efficacy in an animal model of urothelial cancer.
Collapse
|
8
|
Rosenzweig B, Corradi RB, Budhu S, Alvim R, Recabal P, La Rosa S, Somma A, Monette S, Scherz A, Kim K, Coleman JA. Neoadjuvant vascular-targeted photodynamic therapy improves survival and reduces recurrence and progression in a mouse model of urothelial cancer. Sci Rep 2021; 11:4842. [PMID: 33649388 PMCID: PMC7921650 DOI: 10.1038/s41598-021-84184-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 02/08/2021] [Indexed: 01/31/2023] Open
Abstract
Locally advanced urothelial cancer has high recurrence and progression rates following surgical treatment. This highlights the need to develop neoadjuvant strategies that are both effective and well-tolerated. We hypothesized that neoadjuvant sub-ablative vascular-targeted photodynamic therapy (sbVTP), through its immunotherapeutic mechanism, would improve survival and reduce recurrence and progression in a murine model of urothelial cancer. After urothelial tumor implantation and 17 days before surgical resection, mice received neoadjuvant sbVTP (WST11; Tookad Soluble, Steba Biotech, France). Local and systemic response and survival served as measures of therapeutic efficacy, while immunohistochemistry and flow cytometry elucidated the immunotherapeutic mechanism. Data analysis included two-sided Kaplan-Meier, Mann-Whitney, and Fischer exact tests. Tumor volume was significantly smaller in sbVTP-treated animals than in controls (135 mm3 vs. 1222 mm3, P < 0.0001) on the day of surgery. Systemic progression was significantly lower in sbVTP-treated animals (l7% vs. 30%, P < 0.01). Both median progression-free survival and overall survival were significantly greater among animals that received sbVTP and surgery than among animals that received surgery alone (P < 0.05). Neoadjuvant-treated animals also demonstrated significantly lower local recurrence. Neoadjuvant sbVTP was associated with increased early antigen-presenting cells, and subsequent improvements in long-term memory and increases in effector and active T-cells in the spleen, lungs, and blood. In summary, neoadjuvant sbVTP delayed local and systemic progression, prolonged progression-free and overall survival, and reduced local recurrence, thereby demonstrating therapeutic efficacy through an immune-mediated response. These findings strongly support its evaluation in clinical trials.
Collapse
Affiliation(s)
- Barak Rosenzweig
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA.
- Department of Urology, Urologic-Oncology Service, The Chaim Sheba Medical Center, Affiliated with the Sackler School of Medicine, 5262080, Ramat Gan, Israel.
| | - Renato B Corradi
- Department of Surgery, Sloan-Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sadna Budhu
- Immunology Program, The Jedd Wolchok Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ricardo Alvim
- Department of Surgery, Sloan-Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pedro Recabal
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Stephen La Rosa
- Department of Surgery, Sloan-Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex Somma
- Department of Surgery, Sloan-Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sebastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Avigdor Scherz
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Kwanghee Kim
- Department of Surgery, Sloan-Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan A Coleman
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA.
- Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
9
|
Nogueira L, Tracey AT, Alvim R, Reisz P, Scherz A, Coleman JA, Kim K. Developments in Vascular-Targeted Photodynamic Therapy for Urologic Malignancies. Molecules 2020; 25:molecules25225417. [PMID: 33228126 PMCID: PMC7699359 DOI: 10.3390/molecules25225417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 01/10/2023] Open
Abstract
With improved understanding of cancer biology and technical advancements in non-invasive management of urological malignancies, there is renewed interest in photodynamic therapy (PDT) as a means of focal cancer treatment. The application of PDT has also broadened as a result of development of better-tolerated and more effective photosensitizers. Vascular-targeted PDT (VTP) using padeliporfin, which is a water-soluble chlorophyll derivative, allows for tumor-specific cytotoxicity and has demonstrated efficacy in the management of urologic malignancies. Herein, we describe the evolution of photodynamic therapy in urologic oncology and the role of VTP in emerging treatment paradigms.
Collapse
Affiliation(s)
- Lucas Nogueira
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (L.N.); (A.T.T.); (R.A.); (P.R.); (J.A.C.)
| | - Andrew T. Tracey
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (L.N.); (A.T.T.); (R.A.); (P.R.); (J.A.C.)
| | - Ricardo Alvim
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (L.N.); (A.T.T.); (R.A.); (P.R.); (J.A.C.)
| | - Peter Reisz
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (L.N.); (A.T.T.); (R.A.); (P.R.); (J.A.C.)
| | - Avigdor Scherz
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Jonathan A. Coleman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (L.N.); (A.T.T.); (R.A.); (P.R.); (J.A.C.)
| | - Kwanghee Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Correspondence: ; Tel.: +1-646-422-4432; Fax: +1-212-452-3323
| |
Collapse
|
10
|
Grin MA, Suvorov NV, Mironov AF. Natural chlorins as a promising platform for creating targeted theranostics in oncology. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Microorganisms in the Treatment of Cancer: Advantages and Limitations. J Immunol Res 2018; 2018:2397808. [PMID: 29682586 PMCID: PMC5848056 DOI: 10.1155/2018/2397808] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/09/2018] [Indexed: 12/22/2022] Open
Abstract
Cancer remains one of the major challenges of the 21st century. The increasing numbers of cases are not accompanied by adequate progress in therapy. The standard methods of treatment often do not lead to the expected effects. Therefore, it is extremely important to find new, more effective treatments. One of the most promising research directions is immunotherapy, including the use of specific types of microorganisms. This type of treatment is expected to stimulate the immune system for the selective elimination of cancer cells. The research results seem to be promising and show the intensive activation of the immune response as a result of bacterial stimulation. In addition, it is possible to use microorganisms in many different ways, based on their specific properties, that is, toxin production, anaerobic lifestyle, or binding substances that can be delivered to a specific location (vectors). This paper provides an overview of selected microorganisms which are already in use or that are in the experimental phase. Just like any other therapy, the use of microbes for cancer treatment also has some disadvantages. Nevertheless, this kind of treatment can supplement conventional anticancer therapy, giving cancer patients a chance and hope of recovery.
Collapse
|
12
|
O'Shaughnessy MJ, Murray KS, La Rosa SP, Budhu S, Merghoub T, Somma A, Monette S, Kim K, Corradi RB, Scherz A, Coleman JA. Systemic Antitumor Immunity by PD-1/PD-L1 Inhibition Is Potentiated by Vascular-Targeted Photodynamic Therapy of Primary Tumors. Clin Cancer Res 2018; 24:592-599. [PMID: 28954788 PMCID: PMC7558370 DOI: 10.1158/1078-0432.ccr-17-0186] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/30/2017] [Accepted: 09/22/2017] [Indexed: 12/26/2022]
Abstract
Purpose: PD-1/PD-L1 pathway inhibition is effective against advanced renal cell carcinoma, although results are variable and may depend on host factors, including the tumor microenvironment. Vascular-targeted photodynamic (VTP) therapy with the photosensitizer WST11 induces a defined local immune response, and we sought to determine whether this could potentiate the local and systemic antitumor response to PD-1 pathway inhibition.Experimental Design: Using an orthotopic Renca murine model of renal cell carcinoma that develops lung metastases, we treated primary renal tumors with either VTP alone, PD-1/PD-L1 antagonistic antibodies alone, or a combination of VTP and antibodies and then examined treatment responses, including immune infiltration in primary and metastatic sites. Modulation of PD-L1 expression by VTP in human xenograft tumors was also assessed.Results: Treatment of renal tumors with VTP in combination with systemic PD-1/PD-L1 pathway inhibition, but neither treatment alone, resulted in regression of primary tumors, prevented growth of lung metastases, and prolonged survival in a preclinical mouse model. Analysis of tumor-infiltrating lymphocytes revealed that treatment effect was associated with increased CD8+:regulatory T cell (Treg) and CD4+FoxP3-:Treg ratios in primary renal tumors and increased T-cell infiltration in sites of lung metastasis. Furthermore, PD-L1 expression is induced following VTP treatment of human renal cell carcinoma xenografts.Conclusions: Our results demonstrate a role for local immune modulation with VTP in combination with PD-1/PD-L1 pathway inhibition for generation of potent local and systemic antitumor responses. This combined modality strategy may be an effective therapy in cancers resistant to PD-1/PD-L1 pathway inhibition alone. Clin Cancer Res; 24(3); 592-9. ©2017 AACR.
Collapse
Affiliation(s)
- Matthew J O'Shaughnessy
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Urology Associates/Minnesota Urology, Minneapolis, Minnesota
| | - Katie S Murray
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Ellis Fischel Cancer Center, Columbia, Missouri
| | - Stephen P La Rosa
- Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sadna Budhu
- Immunology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Taha Merghoub
- Melanoma and Immunotherapeutics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexander Somma
- Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sebastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, New York
| | - Kwanghee Kim
- Department of Surgery, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Renato Beluco Corradi
- Department of Surgery, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Mario Penna Cancer Institute, Belo Horizonte, Brazil
| | - Avigdor Scherz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jonathan A Coleman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.
- Department of Urology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
13
|
Neuschmelting V, Kim K, Malekzadeh-Najafabadi J, Jebiwott S, Prakash J, Scherz A, Coleman JA, Kircher MF, Ntziachristos V. WST11 Vascular Targeted Photodynamic Therapy Effect Monitoring by Multispectral Optoacoustic Tomography (MSOT) in Mice. Am J Cancer Res 2018; 8:723-734. [PMID: 29344301 PMCID: PMC5771088 DOI: 10.7150/thno.20386] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 08/11/2017] [Indexed: 11/05/2022] Open
Abstract
Objective: Monitoring emerging vascular-targeted photodynamic therapy (VTP) and understanding the time-dynamics of treatment effects remains challenging. We interrogated whether handheld multispectral optoacoustic tomography (MSOT) could noninvasively monitor the effect of VTP using WST11, a vascular-acting photosensitizer, on tumor tissues over time using a renal cell cancer mouse model. We also investigated whether MSOT illumination can induce VTP, to implement a single-modality theranostic approach. Materials and Methods: Eight BalB/c mice were subcutaneously implanted with murine renal adenocarcinoma cells (RENCA) on the flank. Three weeks later VTP was performed (10 min continuous illumination at 753 nm following intravenous infusion using WST11 or saline as control. Handheld MSOT images were collected prior to VTP administration and subsequently thereafter over the course of the first hour, at 24 and 48 h. Data collected were unmixed for blood oxygen saturation in tissue (SO2) based on the spectral signatures of deoxy- and oxygenated hemoglobin. Changes in oxygen saturation over time, relative to baseline, were examined by paired t-test for statistical significance (p < 0.05). In-vivo findings were corroborated by histological analyses of the tumor tissue. Results: MSOT is shown to prominently resolve changes in oxygen saturation in tumors within the first 20 min post WST11-VTP treatment. Within the first hour post-treatment, SO2 decreased by more than 60% over baseline (p < 0.05), whereas it remained unchanged (p > 0.1) in the sham-treated group. Moreover, unlike in the control group, SO2 in treated tumors further decreased over the course of 24 to 48 h post-treatment, concomitant with the propagation of profound central tumor necrosis present in histological analysis. We further show that pulsed MSOT illumination can activate WST11 as efficiently as the continuous wave irradiation employed for treatment. Conclusion: Handheld MSOT non-invasively monitored WST11-VTP effects based on the SO2 signal and detected blood saturation changes within the first 20 min post-treatment. MSOT may potentially serve as a means for both VTP induction and real-time VTP monitoring in a theranostic approach.
Collapse
|
14
|
Schreurs TJL, Jacobs I, Nicolay K, Prompers JJ, Strijkers GJ. Detection of Treatment Success after Photodynamic Therapy Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging. Am J Cancer Res 2017; 7:4643-4657. [PMID: 29187893 PMCID: PMC5706089 DOI: 10.7150/thno.20418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/04/2017] [Indexed: 11/05/2022] Open
Abstract
Early evaluation of response to therapy is crucial for selecting the optimal therapeutic follow-up strategy for cancer patients. PDT is a photochemistry-based treatment modality that induces tumor tissue damage by cytotoxic oxygen radicals, generated by a pre-injected photosensitive drug upon light irradiation of tumor tissue. Vascular shutdown is an important mechanism of tumor destruction for most PDT protocols. In this study, we assessed the suitability of Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) to evaluate treatment efficacy within a day after photodynamic therapy (PDT), using the tumor vascular response as a biomarker for treatment success. Methods: DCE-MRI at 7 T was used to measure the micro-vascular status of subcutaneous colon carcinoma tumors before, right after, and 24 h after PDT in mice. Maps of the area under the curve (AUC) of the contrast agent concentration were calculated from the DCE-MRI data. Besides, tracer kinetic parameters including Ktrans were calculated using the standard Tofts-Kermode model. Viability of tumor tissue at 24 h after PDT was assessed by histological analysis. Results: PDT led to drastic decreases in AUC and Ktrans or complete loss of enhancement immediately after treatment, indicating a vascular shutdown in treated tumor regions. Histological analysis demonstrated that the treatment induced extensive necrosis in the tumors. For PDT-treated tumors, the viable tumor fraction showed a strong correlation (ρ ≥ 0.85) with the tumor fraction with Ktrans > 0.05 min-1 right after PDT. The viable tumor fraction also correlated strongly with the enhanced fraction, the average Ktrans , and the fraction with Ktrans > 0.05 min-1 at 24 h after PDT. Images of the viability stained tumor sections were registered to the DCE-MRI data, demonstrating a good spatial agreement between regions with Ktrans > 0.05 min-1 and viable tissue regions. Finally, 3D post-treatment viability detection maps were constructed for the tumors of three mice by applying a threshold (0.05 min-1) to Ktrans at 24 h after PDT. As a proof of principle, these maps were compared to actual tumor progression after one week. Complete tumor response was correctly assessed in one animal, while residual viable tumor tissue was detected in the other two at the locations where residual tumor tissue was observed after one week. Conclusion: This study demonstrates that DCE-MRI is an effective tool for early evaluation of PDT tumor treatment.
Collapse
|
15
|
Kim K, Zhang H, La Rosa S, Jebiwott S, Desai P, Kimm S, Scherz A, O'Donoghue JA, Weber WA, Coleman JA. Bombesin Antagonist-Based Radiotherapy of Prostate Cancer Combined with WST-11 Vascular Targeted Photodynamic Therapy. Clin Cancer Res 2017; 23:3343-3351. [PMID: 28108545 DOI: 10.1158/1078-0432.ccr-16-2745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
Abstract
Purpose: DOTA-AR, a bombesin-antagonist peptide, has potential clinical application for targeted imaging and therapy in gastrin-releasing peptide receptor (GRPr)-positive malignancies when conjugated with a radioisotope such as 90Y. This therapeutic potential is limited by the fast washout of the conjugates from the target tumors. WST-11 (Weizmann STeba-11 drug; a negatively charged water-soluble palladium-bacteriochlorophyll derivative, Tookad Soluble) vascular targeted photodynamic therapy (VTP) is a local ablation approach recently approved for use in early-stage prostate cancer. It generates reactive oxygen/nitrogen species within tumor blood vessels, resulting in their instantaneous destruction followed by rapid tumor necrosis. We hypothesize that the instantaneous arrest of tumor vasculature may provide a means to trap radiopharmaceuticals within the tumor, thereby improving the efficacy of targeted radiotherapy.Experimental Design: GRPr-positive prostate cancer xenografts (PC-3 and VCaP) were treated with 90Y-DOTA-AR with or without VTP. The uptake of radioisotopes was monitored by Cherenkov luminescence imaging (CLI). The therapeutic efficacy of the combined VTP and 90Y-DOTA-AR in PC-3 xenografts was assessed.Results: CLI of 90Y-DOTA-AR demonstrated longer retention of radiotracer within the VTP-treated PC-3 xenografts compared with the non-VTP-treated ones (P < 0.05) at all time points (24-144 hours) after 90Y-DOTA-AR injection. A similar pattern of retention was observed in VCaP xenografts. When 90Y-DOTA-AR administration was combined with VTP, tumor growth delay was significantly longer than for the control or the monotherapy groups.Conclusions: Tumor vascular arrest by VTP improves 90Y-DOTA-AR retention in the tumor microenvironment thereby enhancing therapeutic efficacy. Clin Cancer Res; 23(13); 3343-51. ©2017 AACR.
Collapse
Affiliation(s)
- Kwanghee Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York
| | - Hanwen Zhang
- Radiochemistry and Imaging Sciences Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York
| | - Stephen La Rosa
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York
| | - Sylvia Jebiwott
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York
| | - Pooja Desai
- Radiochemistry and Imaging Sciences Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York
| | - Simon Kimm
- Urology, Palo Alto Medical Foundation, Stanford, California
| | - Avigdor Scherz
- Plant Science, Weizmann Institute of Science, Rehovot, Israel
| | - Joseph A O'Donoghue
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York
| | - Wolfgang A Weber
- Molecular Imaging and Therapy Services, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York
| | - Jonathan A Coleman
- Division of Urology, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York.
| |
Collapse
|
16
|
Zhang LJ, Zhang XH, Liao PY, Sun JJ, Wang L, Yan YJ, Chen ZL. Antitumor activity evaluation of meso-tetra (pyrrolidine substituted) pentylporphin-mediated photodynamic therapy in vitro and in vivo. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:224-31. [PMID: 27591565 DOI: 10.1016/j.jphotobiol.2016.08.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/26/2016] [Accepted: 08/26/2016] [Indexed: 12/17/2022]
Abstract
Photodynamic therapy is a minimally invasive and promising new method in cancer treatment and has attracted considerable attention in recent years. An ideal photosensitizer is a crucial element to photodynamic therapy. In the present paper, a novel porphyrin derivative, 5, 10, 15, 20-tetrakis (5-(pyrrolidin-1-yl) pentyl) porphin (TPPP) was synthesized. Its spectroscopic and physicochemical properties, therapeutic efficacy as a photosensitizer in photodynamic therapy for human bladder cancer in vitro and in vivo were investigated. TPPP had strong absorption at 648nm (ε=1.75×10(4)M(-1)cm(-1)), and two fluorescence emission peaks at 652nm and 718nm. PDT with TPPP showed low dark toxicity and high phototoxicity to human bladder cancer T24 cells in vitro. In bearing T24 tumor nude mice, the growth of tumor was significantly inhibited by combining use of 5mg/kg TPPP with 100J/cm(2) (650nm, 180mW/cm(2)) laser irradiation at 3h following injection of TPPP. The antitumor effect was also confirmed with histopathological assay. The histopathological study results revealed that PDT using TPPP and 100J/cm(2) (650nm, 180mW/cm(2)) laser irradiation induced tumor cells shrunken and necrotic. These results indicate that TPPP is useful as a new photosensitizer in PDT for cancer, and deserves further investigation.
Collapse
Affiliation(s)
- Li-Jun Zhang
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Xiang-Hua Zhang
- Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200433, China
| | - Ping-Yong Liao
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Jing-Jian Sun
- Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200433, China
| | - Li Wang
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Yi-Jia Yan
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Zhi-Long Chen
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
17
|
This Month in Investigative Urology. J Urol 2016. [DOI: 10.1016/j.juro.2016.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|