1
|
Jin Y, Yang M, Zhao W, Liu M, Fang W, Wang Y, Gao G, Wang Y, Fu Q. Scaffold-based tissue engineering strategies for urethral repair and reconstruction. Biofabrication 2024; 17:012003. [PMID: 39433068 DOI: 10.1088/1758-5090/ad8965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Urethral strictures are common in urology; however, the reconstruction of long urethral strictures remains challenging. There are still unavoidable limitations in the clinical application of grafts for urethral injuries, which has facilitated the advancement of urethral tissue engineering. Tissue-engineered urethral scaffolds that combine cells or bioactive factors with a biomaterial to mimic the native microenvironment of the urethra, offer a promising approach to urethral reconstruction. Despite the recent rapid development of tissue engineering materials and techniques, a consensus on the optimal strategy for urethral repair and reconstruction is still lacking. This review aims to collect the achievements of urethral tissue engineering in recent years and to categorize and summarize them to shed new light on their design. Finally, we visualize several important future directions for urethral repair and reconstruction.
Collapse
Affiliation(s)
- Yangwang Jin
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Ming Yang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States of America
| | - Meng Liu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Wenzhuo Fang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Yuhui Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Guo Gao
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ying Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Qiang Fu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| |
Collapse
|
2
|
Leng W, Li X, Dong L, Guo Z, Ji X, Cai T, Xu C, Zhu Z, Lin J. The Regenerative Microenvironment of the Tissue Engineering for Urethral Strictures. Stem Cell Rev Rep 2024; 20:672-687. [PMID: 38305981 DOI: 10.1007/s12015-024-10686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Urethral stricture caused by various reasons has threatened the quality of life of patients for decades. Traditional reconstruction methods, especially for long-segment injuries, have shown poor outcomes in treating urethral strictures. Tissue engineering for urethral regeneration is an emerging concept in which special designed scaffolds and seed cells are used to promote local urethral regeneration. The scaffolds, seed cells, various factors and the host interact with each other and form the regenerative microenvironment. Among the various interactions involved, vascularization and fibrosis are the most important biological processes during urethral regeneration. Mesenchymal stem cells and induced pluripotent stem cells play special roles in stricture repair and facilitate long-segment urethral regeneration, but they may also induce carcinogenesis and genomic instability during reconstruction. Nevertheless, current technologies, such as genetic engineering, molecular imaging, and exosome extraction, provide us with opportunities to manage seed cell-related regenerative risks. In this review, we described the interactions among seed cells, scaffolds, factors and the host within the regenerative microenvironment, which may help in determining the exact molecular mechanisms involved in urethral stricture regeneration and promoting clinical trials and the application of urethral tissue engineering in patients suffering from urethral stricture.
Collapse
Affiliation(s)
- Wenyuan Leng
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Xiaoyu Li
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Lei Dong
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Zhenke Guo
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Xing Ji
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Tianyu Cai
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Chunru Xu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Zhenpeng Zhu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Jian Lin
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.
- Institute of Urology, Peking University, Beijing, 100034, China.
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China.
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China.
| |
Collapse
|
3
|
Izumi K, Yortchan W, Aizawa Y, Kobayashi R, Hoshikawa E, Ling Y, Suzuki A. Recent trends and perspectives in reconstruction and regeneration of intra/extra-oral wounds using tissue-engineered oral mucosa equivalents. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:365-374. [PMID: 37954029 PMCID: PMC10632115 DOI: 10.1016/j.jdsr.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
Many conditions, including cancer, trauma, and congenital anomalies, can damage the oral mucosa. Multiple cultures of oral mucosal cells have been used for biocompatibility tests and oral biology studies. In recent decades, the clinical translation of tissue-engineered products has progressed significantly in developing tangible therapies and inspiring advancements in medical science. However, the reconstruction of an intraoral mucosa defect remains a significant challenge. Despite the drawbacks of donor-site morbidity and limited tissue supply, the use of autologous oral mucosa remains the gold standard for oral mucosa reconstruction and repair. Tissue engineering offers a promising solution for repairing and reconstructing oral mucosa tissues. Cell- and scaffold-based tissue engineering approaches have been employed to treat various soft tissue defects, suggesting the potential clinical use of tissue-engineered oral mucosa (TEOMs). In this review, we first cover the recent trends in the reconstruction and regeneration of extra-/intra-oral wounds using TEOMs. Next, we describe the current status and challenges of TEOMs. Finally, future strategic approaches and potential technologies to support the advancement of TEOMs for clinical use are discussed.
Collapse
Affiliation(s)
- Kenji Izumi
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
| | - Witsanu Yortchan
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
- Department of Preventive Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand
| | - Yuka Aizawa
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
| | - Ryota Kobayashi
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
| | - Emi Hoshikawa
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
- Division of Periodontology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
| | - Yiwei Ling
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ayako Suzuki
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
| |
Collapse
|
4
|
Fang W, Yang M, Jin Y, Zhang K, Wang Y, Liu M, Wang Y, Yang R, Fu Q. Injectable Decellularized Extracellular Matrix-Based Bio-Ink with Excellent Biocompatibility for Scarless Urethra Repair. Gels 2023; 9:913. [PMID: 37999003 PMCID: PMC10670918 DOI: 10.3390/gels9110913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
In recent years, decellularized extracellular matrices (dECM) derived from organs have attracted much attention from researchers due to their excellent biocompatibility, capacity to promote cell proliferation and migration, as well as pro-vascularization. However, their inferior mechanical properties, slow cross-linking, weak strengths, and poor supporting properties remain their inevitable challenges. In our study, we fabricated a novel dECM hydrogel with better crosslinking strength and speed, stronger support properties, and better mechanical properties. The hydrogel, which we named gelatin-based dECM powder hydrogel (gelatin-dECM hydrogel), was prepared by mixing dECM microparticles in gelatin solution and adding certain amount of 1-Ethyl-3-(3-dimethyl-aminopropyl-1-carbodiimide) (EDC) and N-hydroxysuccinimide (NHS). We evaluated the utility of this hydrogel by assessing the degradation rate, mechanical properties, and biocompatibility. The results showed that the gelatin-dECM hydrogel has high mechanical properties and biocompatibility and also has the ability to promote cell proliferation and migration. After injection of this hydrogel around the surgical sites of urethras in rabbits, the incorporation of dECM powder was demonstrated to promote angiogenesis as well as scarless repair by histological sections after surgery. The application of this novel hydrogel provides a new perspective for the treatment of post-traumatic urethral stricture.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ranxing Yang
- Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiaotong University, No. 600 Yi-Shan Road, Shanghai 200233, China; (W.F.); (M.Y.); (Y.J.); (K.Z.); (Y.W.); (M.L.); (Y.W.)
| | - Qiang Fu
- Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiaotong University, No. 600 Yi-Shan Road, Shanghai 200233, China; (W.F.); (M.Y.); (Y.J.); (K.Z.); (Y.W.); (M.L.); (Y.W.)
| |
Collapse
|
5
|
Horiguchi A. Editorial Comment on the paper titled "Comparison of oral morbidity and mid-term efficacy of anterior urethroplasty using an autologous tissue-engineered graft (MukoCell®) versus native oral mucosa graft". Int J Urol 2023; 30:1007. [PMID: 37489638 DOI: 10.1111/iju.15258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Affiliation(s)
- Akio Horiguchi
- Department of Urology, National Defense Medical College, Saitama, Japan
| |
Collapse
|
6
|
Karapanos L, Knorr V, Halbe L, Schmautz M, Ergashev B, Heidenreich A. Comparison of oral morbidity and mid-term efficacy of anterior urethroplasty using an autologous tissue-engineered graft (MukoCell®) versus native oral mucosa graft. Int J Urol 2023; 30:1000-1007. [PMID: 37435860 PMCID: PMC11524134 DOI: 10.1111/iju.15247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 06/27/2023] [Indexed: 07/13/2023]
Abstract
OBJECTIVE Our study aimed to compare surgical success rate (SR) and oral morbidity of augmentation urethroplasty for anterior urethral strictures using autologous tissue-engineered oral mucosa graft (TEOMG) named MukoCell® versus native oral mucosa graft (NOMG). METHODS We conducted a single-institution observational study on patients undergoing TEOMG and NOMG urethroplasty for anterior urethral strictures >2 cm in length from January 2016 to July 2020. SR, oral morbidity, and potential risk factors of recurrence were compared between groups were analyzed. A decrease of maximum uroflow rate < 15 mL/s or further instrumentation was considered a failure. RESULTS Overall, TEOMG (n = 77) and NOMG (n = 76) groups had comparable SR (68.8% vs. 78.9%, p = 0.155) after a median follow-up of 52 (interquartile range [IQR] 45-60) months for TEOMG and 53.5 (IQR 43-58) months for NOMG. Subgroup analysis revealed comparable SR according to surgical technique, stricture localization, and length. Only following repetitive urethral dilatations, TEOMG achieved lower SR (31.3% vs. 81.3%, p = 0.003). Surgical time was significantly shorter by TEOMG use (median 104 vs. 182 min, p < 0.001). Oral morbidity and the associated "burden" in patients' quality of life were significantly less at 3 weeks following the biopsy required for TEOMG manufacture, compared to NOMG harvesting and totally absent at 6 and 12 months postoperatively. CONCLUSIONS The SR of TEOMG urethroplasty appeared to be comparable to NOMG at a mid-term follow-up but taking into account the uneven distribution of stricture site and the surgical techniques used in both groups. Surgical time was significantly shortened, since no intraoperative mucosa harvesting was required, and oral complications were diminished through the preoperative biopsy for MukoCell® manufacture.
Collapse
Affiliation(s)
- Leonidas Karapanos
- Department of Urology, Uro‐Oncology, Robot‐Assisted and Reconstructive Surgery, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Vincent Knorr
- Department of UrologyStaedtisches Klinikum KarlsruheKarlsruheGermany
| | - Luisa Halbe
- Department of Urology, Uro‐Oncology, Robot‐Assisted and Reconstructive Surgery, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Maximilian Schmautz
- Department of Urology, Uro‐Oncology, Robot‐Assisted and Reconstructive Surgery, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Bobirjon Ergashev
- Department of UrologyAndijan State Medical InstituteAndijanUzbekistan
| | - Axel Heidenreich
- Department of Urology, Uro‐Oncology, Robot‐Assisted and Reconstructive Surgery, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| |
Collapse
|
7
|
Jin Y, Zhao W, Yang M, Fang W, Gao G, Wang Y, Fu Q. Cell-Based Therapy for Urethral Regeneration: A Narrative Review and Future Perspectives. Biomedicines 2023; 11:2366. [PMID: 37760808 PMCID: PMC10525510 DOI: 10.3390/biomedicines11092366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/29/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Urethral stricture is a common urological disease that seriously affects quality of life. Urethroplasty with grafts is the primary treatment, but the autografts used in clinical practice have unavoidable disadvantages, which have contributed to the development of urethral tissue engineering. Using various types of seed cells in combination with biomaterials to construct a tissue-engineered urethra provides a new treatment method to repair long-segment urethral strictures. To date, various cell types have been explored and applied in the field of urethral regeneration. However, no optimal strategy for the source, selection, and application conditions of the cells is available. This review systematically summarizes the use of various cell types in urethral regeneration and their characteristics in recent years and discusses possible future directions of cell-based therapies.
Collapse
Affiliation(s)
- Yangwang Jin
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China; (Y.J.)
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC 27157, USA
| | - Ming Yang
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China; (Y.J.)
| | - Wenzhuo Fang
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China; (Y.J.)
| | - Guo Gao
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Wang
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China; (Y.J.)
| | - Qiang Fu
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China; (Y.J.)
| |
Collapse
|
8
|
Farzamfar S, Richer M, Rahmani M, Naji M, Aleahmad M, Chabaud S, Bolduc S. Biological Macromolecule-Based Scaffolds for Urethra Reconstruction. Biomolecules 2023; 13:1167. [PMID: 37627232 PMCID: PMC10452429 DOI: 10.3390/biom13081167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Urethral reconstruction strategies are limited with many associated drawbacks. In this context, the main challenge is the unavailability of a suitable tissue that can endure urine exposure. However, most of the used tissues in clinical practices are non-specialized grafts that finally fail to prevent urine leakage. Tissue engineering has offered novel solutions to address this dilemma. In this technology, scaffolding biomaterials characteristics are of prime importance. Biological macromolecules are naturally derived polymers that have been extensively studied for various tissue engineering applications. This review discusses the recent advances, applications, and challenges of biological macromolecule-based scaffolds in urethral reconstruction.
Collapse
Affiliation(s)
- Saeed Farzamfar
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
| | - Megan Richer
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
| | - Mahya Rahmani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran;
| | - Mohammad Naji
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran;
| | - Mehdi Aleahmad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran 1417613151, Iran;
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
9
|
Engineered human organ-specific urethra as a functional substitute. Sci Rep 2022; 12:21346. [PMID: 36494468 PMCID: PMC9734558 DOI: 10.1038/s41598-022-25311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Urologic patients may be affected by pathologies requiring surgical reconstruction to re-establish a normal function. The lack of autologous tissues to reconstruct the urethra led clinicians toward new solutions, such as tissue engineering. Tridimensional tissues were produced and characterized from a clinical perspective. The balance was optimized between increasing the mechanical resistance of urethral-engineered tissue and preserving the urothelium's barrier function, essential to avoid urine extravasation and subsequent inflammation and fibrosis. The substitutes produced using a mix of vesical (VF) and dermal fibroblasts (DF) in either 90%:10% or 80%:20% showed mechanical resistance values comparable to human native bladder tissue while maintaining functionality. The presence of mature urothelium markers such as uroplakins and tight junctions were documented. All substitutes showed similar histological features except for the noticeable decrease in polysaccharide globules for the substitutes made with a higher proportion of DF. The degree of maturation evaluated with electron microscopy was positively correlated with the increased concentration of VF in the stroma. Substitutes produced with VF and at least 10% of DF showed sufficient mechanical resistance to withstand surgeon manipulation and high functionality, which may improve long-term patients' quality of life, representing a great future alternative to current treatments.
Collapse
|
10
|
Xuan Z, Zachar V, Pennisi CP. Sources, Selection, and Microenvironmental Preconditioning of Cells for Urethral Tissue Engineering. Int J Mol Sci 2022; 23:14074. [PMID: 36430557 PMCID: PMC9697333 DOI: 10.3390/ijms232214074] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Urethral stricture is a common urinary tract disorder in men that can be caused by iatrogenic causes, trauma, inflammation, or infection and often requires reconstructive surgery. The current therapeutic approach for complex urethral strictures usually involves reconstruction with autologous tissue from the oral mucosa. With the goal of overcoming the lack of sufficient autologous tissue and donor site morbidity, research over the past two decades has focused on cell-based tissue-engineered substitutes. While the main focus has been on autologous cells from the penile tissue, bladder, and oral cavity, stem cells from sources such as adipose tissue and urine are competing candidates for future urethral regeneration due to their ease of collection, high proliferative capacity, maturation potential, and paracrine function. This review addresses the sources, advantages, and limitations of cells for tissue engineering in the urethra and discusses recent approaches to improve cell survival, growth, and differentiation by mimicking the mechanical and biophysical properties of the extracellular environment.
Collapse
Affiliation(s)
| | | | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
11
|
Reichert M, Aragona M, Soukkar A, Olianas R. Mesh Graft Urethroplasty-Still a Safe and Promising Technique in Mostly Unpromising Complex Urethral Strictures. J Clin Med 2022; 11:5989. [PMID: 36294313 PMCID: PMC9604618 DOI: 10.3390/jcm11205989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/28/2022] Open
Abstract
Long urethral strictures or even recurrent urethral strictures, mostly with scar tissue showing insufficient healing tendencies, are defined as complex and represent a big challenge in modern reconstructive urology. Initially, the treatment of complicated urethral strictures was associated with a high failure rate (20-40%) due to the growth of hair in the neourethra and a lack of sufficient suitable epithelium when scrotal skin was used. Although much effort was put into tissue engineering recently, harvesting and transplanting autologous tissue represent the standard of care for urethral substitution or augmentation. Since 1977, two-staged urethroplasty with the usage of free foreskin or 0.1 mm thick meshed skin from the upper leg was performed in complicated cases and was initially described in 1984 and 1989 by Schreiter and Schreiter and Noll, respectively. In stage 1, the graft is harvested by cutting the skin thinly above the hair follicles and transplanted as a plate around the opened urethra. In stage 2, after 8-12 weeks, the neourethra is formed. Success rates of up to 84% are described. Considering the complexity of the strictures in which mesh graft urethroplasty is usually performed, the reachable success rates are outstanding, especially considering that this surgery is most likely the last opportunity to prevent perineostomy or even urinary diversion. This article describes the surgical technique and embeds the mesh graft urethroplasty in today's literature to underline its importance in the surgical management of complex urethral strictures.
Collapse
Affiliation(s)
- Mathias Reichert
- Department of Urology, Universitätsmedizin Göttingen, 37099 Göttingen, Germany
| | - Maurizio Aragona
- Department of Urology, Städtisches Klinikum Lüneburg, 21339 Lüneburg, Germany
| | - Ahmad Soukkar
- Department of Urology, Städtisches Klinikum Lüneburg, 21339 Lüneburg, Germany
| | - Roberto Olianas
- Department of Urology, Städtisches Klinikum Lüneburg, 21339 Lüneburg, Germany
| |
Collapse
|
12
|
Song L, Deng K, Yuan W, Zhang J, Lin J, Hu X, Huang J, Zhang K, Zhang H, Si J, Li H, Xu T, Fu Q. Anterior substitutional urethroplasty using a biomimetic poly-l-lactide nanofiber membrane: Preclinical and clinical outcomes. Bioeng Transl Med 2022; 7:e10308. [PMID: 36176613 PMCID: PMC9472005 DOI: 10.1002/btm2.10308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of this study is to investigate the feasibility and efficacy of a novel biomimetic poly-l-lactide (PLLA) nanofiber membrane in repairing anterior urethral strictures from both preclinic and clinic. Biomimetic PLLA membrane was fabricated layer by layer according to the structure of human extracellular matrix. Microstructure, tensile strength, and suture retention strength were fully assessed. Before the clinical application, the safety and toxicology test of the biomimetic PLLA membrane was performed in vitro and in experimental animals. The patients underwent urethroplasty used dorsal onlay or lateral onlay technique. Then, they were followed up for 1 month, 3 months, 6 months, and then annually after the surgery. The mechanical experiments showed well property for application. Biomimetic PLLA membrane was safe according to the in vitro and animal studies. Then, a total of 25 patients (mean age 48.96 years) were included in the study from September 2016 to December 2018. After a mean follow-up of 33.56 months, 20 patients successfully treated with biomimetic PLLA membrane. Five patients (2 bulbar and 3 penile) suffered postoperational urethral stricture recurrence. None of infection or urinary fistula or any other adverse events related to the use of biomimetic PLLA membrane were observed during the follow-up period for all patients. The preliminary result confirmed the feasibility and efficacy of the biomimetic PLLA membrane as a novel material for anterior urethral repair. The long-term effects with more patients should be investigated in further studies.
Collapse
Affiliation(s)
- Lujie Song
- Department of UrologyShanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Oriental Institute for Urologic ReconstructionShanghaiChina
| | - Kunxue Deng
- Department of Research and DevelopmentMedprin Regenerative Medical Technologies Co., Ltd.GuangzhouChina
| | - Wei Yuan
- Department of UrologyShanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Oriental Institute for Urologic ReconstructionShanghaiChina
| | - Jing Zhang
- Department of Research and DevelopmentMedprin Regenerative Medical Technologies Co., Ltd.GuangzhouChina
- East China Institute of Digital Medical EngineeringShangraoChina
| | - Jiahao Lin
- Department of UrologyShanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Oriental Institute for Urologic ReconstructionShanghaiChina
| | - Xiaoyong Hu
- Department of UrologyShanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Oriental Institute for Urologic ReconstructionShanghaiChina
| | - Jianwen Huang
- Department of UrologyShanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Oriental Institute for Urologic ReconstructionShanghaiChina
| | - Kaile Zhang
- Department of UrologyShanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Oriental Institute for Urologic ReconstructionShanghaiChina
| | - Haitao Zhang
- Department of Research and DevelopmentMedprin Regenerative Medical Technologies Co., Ltd.GuangzhouChina
- East China Institute of Digital Medical EngineeringShangraoChina
| | - Jiemin Si
- Department of UrologyShanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Oriental Institute for Urologic ReconstructionShanghaiChina
| | - Hongbin Li
- Department of UrologyShanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Oriental Institute for Urologic ReconstructionShanghaiChina
| | - Tao Xu
- Biomanufacturing Center, Department of Mechanical EngineeringTsinghua UniversityBeijingChina
- Department of Precision Medicine and HealthcareTsinghua‐Berkeley Shenzhen InstituteShenzhenChina
| | - Qiang Fu
- Department of UrologyShanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Oriental Institute for Urologic ReconstructionShanghaiChina
| |
Collapse
|
13
|
Salg GA, Blaeser A, Gerhardus JS, Hackert T, Kenngott HG. Vascularization in Bioartificial Parenchymal Tissue: Bioink and Bioprinting Strategies. Int J Mol Sci 2022; 23:ijms23158589. [PMID: 35955720 PMCID: PMC9369172 DOI: 10.3390/ijms23158589] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Among advanced therapy medicinal products, tissue-engineered products have the potential to address the current critical shortage of donor organs and provide future alternative options in organ replacement therapy. The clinically available tissue-engineered products comprise bradytrophic tissue such as skin, cornea, and cartilage. A sufficient macro- and microvascular network to support the viability and function of effector cells has been identified as one of the main challenges in developing bioartificial parenchymal tissue. Three-dimensional bioprinting is an emerging technology that might overcome this challenge by precise spatial bioink deposition for the generation of a predefined architecture. Bioinks are printing substrates that may contain cells, matrix compounds, and signaling molecules within support materials such as hydrogels. Bioinks can provide cues to promote vascularization, including proangiogenic signaling molecules and cocultured cells. Both of these strategies are reported to enhance vascularization. We review pre-, intra-, and postprinting strategies such as bioink composition, bioprinting platforms, and material deposition strategies for building vascularized tissue. In addition, bioconvergence approaches such as computer simulation and artificial intelligence can support current experimental designs. Imaging-derived vascular trees can serve as blueprints. While acknowledging that a lack of structured evidence inhibits further meta-analysis, this review discusses an end-to-end process for the fabrication of vascularized, parenchymal tissue.
Collapse
Affiliation(s)
- Gabriel Alexander Salg
- Department of General-, Visceral-, and Transplantation Surgery, University Hospital Heidelberg, D-69120 Heidelberg, Germany;
- Correspondence: (G.A.S.); (H.G.K.); Tel.: +49-6221-56310306 (G.A.S.); +49-6221-5636611 (H.G.K.)
| | - Andreas Blaeser
- Institute for BioMedical Printing Technology, Technical University Darmstadt, D-64289 Darmstadt, Germany; (A.B.); (J.S.G.)
- Center for Synthetic Biology, Technical University Darmstadt, D-64289 Darmstadt, Germany
| | - Jamina Sofie Gerhardus
- Institute for BioMedical Printing Technology, Technical University Darmstadt, D-64289 Darmstadt, Germany; (A.B.); (J.S.G.)
| | - Thilo Hackert
- Department of General-, Visceral-, and Transplantation Surgery, University Hospital Heidelberg, D-69120 Heidelberg, Germany;
| | - Hannes Goetz Kenngott
- Department of General-, Visceral-, and Transplantation Surgery, University Hospital Heidelberg, D-69120 Heidelberg, Germany;
- Correspondence: (G.A.S.); (H.G.K.); Tel.: +49-6221-56310306 (G.A.S.); +49-6221-5636611 (H.G.K.)
| |
Collapse
|
14
|
Adamo D, Galaverni G, Genna VG, Lococo F, Pellegrini G. The Growing Medical Need for Tracheal Replacement: Reconstructive Strategies Should Overcome Their Limits. Front Bioeng Biotechnol 2022; 10:846632. [PMID: 35646864 PMCID: PMC9132048 DOI: 10.3389/fbioe.2022.846632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Breathing, being predominantly an automatic action, is often taken for granted. However, respiratory diseases affect millions of people globally, emerging as one of the major causes of disability and death overall. Among the respiratory dysfunctions, tracheal alterations have always represented a primary challenge for clinicians, biologists, and engineers. Indeed, in the case of wide structural alterations involving more than 50% of the tracheal length in adults or 30% in children, the available medical treatments are ineffective or inapplicable. So far, a plethora of reconstructive approaches have been proposed and clinically applied to face this growing, unmet medical need. Unfortunately, none of them has become a well-established and routinely applied clinical procedure to date. This review summarizes the main clinical reconstructive attempts and classifies them as non-tissue engineering and tissue engineering strategies. The analysis of the achievements and the main difficulties that still hinder this field, together with the evaluation of the forefront preclinical experiences in tracheal repair/replacement, is functional to promote a safer and more effective clinical translation in the near future.
Collapse
Affiliation(s)
- Davide Adamo
- Interdepartmental Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Galaverni
- Interdepartmental Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Filippo Lococo
- Università Cattolica del Sacro Cuore, Rome, Italy
- Thoracic Surgery Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Graziella Pellegrini
- Interdepartmental Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
- Holostem Terapie Avanzate S.r.l., Modena, Italy
| |
Collapse
|
15
|
Sakulpaptong W, Clairmonte IA, Blackstone BN, Leblebicioglu B, Powell HM. 3D engineered human gingiva fabricated with electrospun collagen scaffolds provides a platform for in vitro analysis of gingival seal to abutment materials. PLoS One 2022; 17:e0263083. [PMID: 35113915 PMCID: PMC8812907 DOI: 10.1371/journal.pone.0263083] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/11/2022] [Indexed: 11/28/2022] Open
Abstract
In order to advance models of human oral mucosa towards routine use, these models must faithfully mimic the native tissue structure while also being scalable and cost efficient. The goal of this study was to develop a low-cost, keratinized human gingival model with high fidelity to human attached gingiva and demonstrate its utility for studying the implant-tissue interface. Primary human gingival fibroblasts (HGF) and keratinocytes (HGK) were isolated from clinically healthy gingival biopsies. Four matrices, electrospun collagen (ES), decellularized dermis (DD), type I collagen gels (Gel) and released type I collagen gels (Gel-R)) were tested to engineer lamina propria and gingiva. HGF viability was similar in all matrices except for Gel-R, which was significantly decreased. Cell penetration was largely limited to the top layers of all matrices. Histomorphometrically, engineered human gingiva was found to have similar appearance to the native normal human gingiva except absence of rete pegs. Immunohistochemical staining for cell phenotype, differentiation and extracellular matrix composition and organization within 3D engineered gingiva made with electrospun collagen was mostly in agreement with normal gingival tissue staining. Additionally, five types of dental material posts (5-mm diameter x 3-mm height) with different surface characteristics were used [machined titanium, SLA (sandblasted-acid etched) titanium, TiN-coated (titanium nitride-coated) titanium, ceramic, and PEEK (Polyetheretherketone) to investigate peri-implant soft tissue attachment studied by histology and SEM. Engineered epithelial and stromal tissue migration to the implant-gingival tissue interface was observed in machined, SLA, ceramic, and PEEK groups, while TiN was lacking attachment. Taken together, the results suggest that electrospun collagen scaffolds provide a scalable, reproducible and cost-effective lamina propria and 3D engineered gingiva that can be used to explore biomaterial-soft tissue interface.
Collapse
Affiliation(s)
- Wichurat Sakulpaptong
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, OH, United States of America
- Faculty of Dentistry, Department of Oral Medicine and Periodontology, Mahidol University, Bangkok, Thailand
| | - Isabelle A. Clairmonte
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Britani N. Blackstone
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Binnaz Leblebicioglu
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, OH, United States of America
| | - Heather M. Powell
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, United States of America
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States of America
- Research Department, Shriners Children’s Ohio, Dayton, Ohio, United States of America
- * E-mail:
| |
Collapse
|
16
|
Ławkowska K, Rosenbaum C, Petrasz P, Kluth L, Koper K, Drewa T, Pokrywczynska M, Adamowicz J. Tissue engineering in reconstructive urology-The current status and critical insights to set future directions-critical review. Front Bioeng Biotechnol 2022; 10:1040987. [PMID: 36950181 PMCID: PMC10026841 DOI: 10.3389/fbioe.2022.1040987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/13/2022] [Indexed: 03/05/2023] Open
Abstract
Advanced techniques of reconstructive urology are gradually reaching their limits in terms of their ability to restore urinary tract function and patients' quality of life. A tissue engineering-based approach to urinary tract reconstruction, utilizing cells and biomaterials, offers an opportunity to overcome current limitations. Although tissue engineering studies have been heralding the imminent introduction of this method into clinics for over a decade, tissue engineering is only marginally applied. In this review, we discuss the role of tissue engineering in reconstructive urology and try to answer the question of why such a promising technology has not proven its clinical usability so far.
Collapse
Affiliation(s)
- Karolina Ławkowska
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Clemens Rosenbaum
- Department of Urology Asklepios Klinik Barmbek Germany, Urologist in Hamburg, Hamburg, Germany
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Piotr Petrasz
- Department of Urology Voivodeship Hospital Gorzów Wielkopolski, Gorzów Wielkopolski, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Luis Kluth
- Department of Urology, University Medical Center Frankfurt, Frankfurt am Main, Germany
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Krzysztof Koper
- Department of Clinical Oncology and Nursing, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Tomasz Drewa
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Marta Pokrywczynska
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Jan Adamowicz
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | | |
Collapse
|
17
|
Tissue Engineering of the Urethra: From Bench to Bedside. Biomedicines 2021; 9:biomedicines9121917. [PMID: 34944733 PMCID: PMC8698949 DOI: 10.3390/biomedicines9121917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022] Open
Abstract
Tissue engineering (TE) is a promising approach for repair/substitution of damaged tissues and organs. Urethral strictures are common and serious health conditions that impair quality of life and may lead to serious organ damage. The search for ideal materials for urethral repair has led to interest of scientists and surgeons in urethral TE. Over the last decades, a significant amount of preclinical studies and considerable progress have been observed. In contrast, urethral TE has made slow progress in clinical practice so far. To address this, we conducted a systematic review of the literature on clinical applications of TE constructs for urethral repair in the last three decades. In summary, the TE approach is promising and effective, but many issues remain that need to be addressed for broader adoption of TE in urethral repair. Better design of trials, better cooperation of research groups and centralization could lead to reduction of costs and slowly proceed to commercialization and routine use of TE products for urethral reconstruction.
Collapse
|
18
|
Buhl M, Kloskowski T, Jundzill A, Szeliski K, Rasmus M, Dąbrowski P, Siedlecka N, Drewa T, Pokrywczynska M. Increased Expression of p63 Protein and Sonic Hedgehog Signaling Molecule in Buccal Epithelial Holoclones. Stem Cells Dev 2021; 30:1037-1048. [PMID: 34486385 DOI: 10.1089/scd.2021.0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Construction of many tissues and organs de novo requires the use of external epithelial cell sources. In the present study, we optimized the isolation, expansion, and characterization of porcine oral epithelial cells from buccal tissue (Buccal Epithelial Cells, BECs). Additionally, we tested whether key markers [cytokeratin 14 (ck14), p63 protein, and sonic hedgehog molecule (shh)] expression profiles are correlated with three buccal epithelial clone types. Two digestion methods of BECs isolation [Method 1, M1 (collagenase IV/dispase and accutase) and Method 2, M2 (collagenase IV/dispase and trypsin/EDTA)] were compared. Cells obtained by more effective method were further cultured to the third passage and analyzed. Holoclone-, meroclone-, and paraclone-like colonies were identified based on BEC morphology. Immunofluorescent staining was performed to compare selected markers for the indicated buccal clone types. Comparative analysis demonstrated the advantage of isolation using M1 over M2. Cells from the third passage exhibited average 92.73% ± 2.27% presence of ck14. Real-time polymerase chain reaction confirmed expression of tested genes [cytokeratin 8 (ck8), ck14, integrin β1, and p63]. The highest level of ck14, shh and p63, was observed for holoclones. The comparable ck14 expression was observed in the mero- and paraclones. Meroclones expressed significantly lower levels of shh compared with paraclones. The weakest p63 expression was observed in the paraclone-like cells. It was demonstrated that holoclones are the richest in shh (+) and p63 (+) stem cells and these cells should appear to be a promising alternative for obtaining epithelial cells for tissue engineering purposes.
Collapse
Affiliation(s)
- Monika Buhl
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Kloskowski
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Arkadiusz Jundzill
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.,Department of Plastic, Reconstructive, and Esthetic Surgery, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Kamil Szeliski
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Rasmus
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Paweł Dąbrowski
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Natalia Siedlecka
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Drewa
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Pokrywczynska
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
19
|
Pereira D, Sequeira I. A Scarless Healing Tale: Comparing Homeostasis and Wound Healing of Oral Mucosa With Skin and Oesophagus. Front Cell Dev Biol 2021; 9:682143. [PMID: 34381771 PMCID: PMC8350526 DOI: 10.3389/fcell.2021.682143] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Epithelial tissues are the most rapidly dividing tissues in the body, holding a natural ability for renewal and regeneration. This ability is crucial for survival as epithelia are essential to provide the ultimate barrier against the external environment, protecting the underlying tissues. Tissue stem and progenitor cells are responsible for self-renewal and repair during homeostasis and following injury. Upon wounding, epithelial tissues undergo different phases of haemostasis, inflammation, proliferation and remodelling, often resulting in fibrosis and scarring. In this review, we explore the phenotypic differences between the skin, the oesophagus and the oral mucosa. We discuss the plasticity of these epithelial stem cells and contribution of different fibroblast subpopulations for tissue regeneration and wound healing. While these epithelial tissues share global mechanisms of stem cell behaviour for tissue renewal and regeneration, the oral mucosa is known for its outstanding healing potential with minimal scarring. We aim to provide an updated review of recent studies that combined cell therapy with bioengineering exporting the unique scarless properties of the oral mucosa to improve skin and oesophageal wound healing and to reduce fibrotic tissue formation. These advances open new avenues toward the ultimate goal of achieving scarless wound healing.
Collapse
Affiliation(s)
| | - Inês Sequeira
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
20
|
Tissue engineering: recent advances and review of clinical outcome for urethral strictures. Curr Opin Urol 2021; 31:498-503. [PMID: 34397507 DOI: 10.1097/mou.0000000000000921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW Urethrotomy remains the first-line therapy in the treatment of a urethral stricture despite data showing no real chance of a cure after repeated urethrotomies. An anastomotic or an augmentation urethroplasty using oral mucosa can be offered to patients following failed urethrotomy. The potential for a tissue engineered solution as an alternative to native tissue has been explored in recent years and is reviewed in this article. RECENT FINDINGS More than 80 preclinical studies have investigated a tissue-engineered approach for urethral reconstruction mostly using decellularized natural scaffolds derived from natural extracellular matrix with or without cell seeding. The animal models used in preclinical testing are not representative of disease processes seen with strictures in man. The available clinical studies are based on small noncontrolled series. SUMMARY There is a potential role for tissue engineering to provide a material for substitution urethroplasty and work has demonstrated this. Further work will require a rigorous basic science programme and adequate evaluation of the material prior to its introduction into clinical practice. The research with tissue engineering applied to the urethra has not yet been resulted in a widely available material for clinical use that approaches the efficacy seen with the use of autologous grafts.
Collapse
|
21
|
Horiguchi A. Editorial Comment to Safety and mid-term surgical results of anterior urethroplasty with the tissue-engineered oral mucosa graft MukoCell ® : A single-center experience. Int J Urol 2021; 28:943. [PMID: 34131974 DOI: 10.1111/iju.14622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Akio Horiguchi
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
22
|
Cell-Seeded Acellular Artery for Reconstruction of Long Urethral Defects in a Canine Model. Stem Cells Int 2021; 2021:8854479. [PMID: 34194508 PMCID: PMC8203373 DOI: 10.1155/2021/8854479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/25/2021] [Accepted: 05/16/2021] [Indexed: 11/18/2022] Open
Abstract
The management of urethral stricture remains a major therapeutic challenge in clinics. Herein, we explored the feasibility of reconstructing a relatively long segment of the urethra by the cell-seeded acellular artery in a canine model. The acellular arterial matrix was obtained from the excised carotid artery of donor dogs. Autologous adipose-derived stem cells (ADSCs) from 6 male dogs were grown and seeded onto the premade acellular arterial matrix. A 3 cm long segment of the urethra was resected in 12 male dogs. Urethroplasty was performed with the acellular arterial matrix seeded with ADSCs in 6 animals and without cells in 6. Serial urethrography was performed at 1 and 3 months postoperatively. Wide urethral calibers without any signs of strictures were confirmed in all 6 animals in the experimental group. In contrast, urethral stricture was demonstrated in 3 animals in the control group. The graft was highly epithelialized and smooth in the experimental group, while graft contracture and scar formation were showed in the control group. Histologic analysis of the cell-seeded arterial matrix at 1 month confirmed the presence of multilayered urothelium and muscle. The levels of tissue formation developed over time with a progressive increase in muscle content. In contrast, extensive fibrosis and sparse smooth muscle were seen in animals treated with matrix without ADSCs. This study provides preclinical evidence that the ADSC-seeded arterial matrix can be used as a tubularized scaffold in the reconstruction of 3 cm long urethral defect in a male canine model. The ADSC-seeded arterial matrix remodels and regenerates normal-appearing urethral tissue layers over time.
Collapse
|
23
|
Paternoster JL, Vranckx JJ. State of the art of clinical applications of Tissue Engineering in 2021. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:592-612. [PMID: 34082599 DOI: 10.1089/ten.teb.2021.0017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tissue engineering (TE) was introduced almost 30 years ago as a potential technique for regenerating human tissues. However, despite promising laboratory findings, the complexity of the human body, scientific hurdles, and lack of persistent long-term funding still hamper its translation towards clinical applications. In this report, we compile an inventory of clinically applied TE medical products relevant to surgery. A review of the literature, including articles published within the period from 1991 to 2020, was performed according to the PRISMA protocol, using databanks PubMed, Cochrane Library, Web of Science, and Clinicaltrials.gov. We identified 1039 full-length articles as eligible; due to the scarcity of clinical, randomised, controlled trials and case studies, we extended our search towards a broad surgical spectrum. Forty papers involved clinical TE studies. Amongst these, 7 were related to TE protocols for cartilage applied in the reconstruction of nose, ear, and trachea. Nine papers reported TE protocols for articular cartilage, 9 for urological purposes, 7 described TE strategies for cardiovascular aims, and 8 for dermal applications. However, only two clinical studies reported on three-dimensional (3D) and functional long-lasting TE constructs. The concept of generating 3D TE constructs and organs based on autologous molecules and cells is intriguing and promising. The first translational tissue-engineered products and techniques have been clinically implemented. However, despite the 30 years of research and development in this field, TE is still in its clinical infancy. Multiple experimental, ethical, budgetary, and regulatory difficulties hinder its rapid translation. Nevertheless, the first clinical applications show great promise and indicate that the translation towards clinical medical implementation has finally started.
Collapse
Affiliation(s)
- Julie Lien Paternoster
- UZ Leuven Campus Gasthuisberg Hospital Pharmacy, 574134, Plastic Surgery , Herestraat 49, Leuven, Belgium, 3000;
| | - Jan Jeroen Vranckx
- Universitaire Ziekenhuizen Leuven, 60182, Plastic and Reconstructive Surgery, Leuven, Belgium;
| |
Collapse
|
24
|
Karapanos L, Akbarov I, Zugor V, Kokx R, Hagemeier A, Heidenreich A. Safety and mid-term surgical results of anterior urethroplasty with the tissue-engineered oral mucosa graft MukoCell ® : A single-center experience. Int J Urol 2021; 28:936-942. [PMID: 34053150 DOI: 10.1111/iju.14606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/27/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To assess the mid-term efficacy and safety of anterior urethroplasty using an autologous tissue-engineered oral mucosa graft (MukoCell® ). METHODS The data of 77 patients with anterior urethral strictures undergoing treatment with MukoCell® at a tertiary center from June 2016 to May 2019 were analyzed. Patients' characteristics, pre- and postoperative diagnostics, perioperative complications, and follow-up data were obtained. The overall stricture-free survival, outcomes of the different surgical techniques, stricture localizations, stricture length, early complications of the procedure and risk factors of recurrence were assessed. RESULTS The median follow-up period was 38 months (interquartile range 31-46). The overall recurrence-free rate of anterior urethroplasty using MukoCell® was 68.8%, 24 patients (31.2%) developed a recurrence of the stricture. The stricture recurrences were observed at a median of 7 months (interquartile range 3-13) only in patients with at least one previous surgery or repeated dilatations in their medical history. No oral-urethral adverse events related to the use of MukoCell® were observed, except for a urethrocutaneous fistula (1.3%) requiring reoperation. CONCLUSIONS Anterior one-stage urethroplasty using MukoCell® showed in our hands a mid-term success rate of up to 68.8% without significant adverse events after a median follow-up period of 38 months. This procedure might be an alternative option for long-segment urethral reconstruction.
Collapse
Affiliation(s)
- Leonidas Karapanos
- Department of Urology, Uro-Oncology, Robot-Assisted and Reconstructive Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ilgar Akbarov
- Department of Urology, Uro-Oncology, Robot-Assisted and Reconstructive Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Urology, University Hospital Basel, Basel, Switzerland
| | - Vahudin Zugor
- Department of Urology, Uro-Oncology, Robot-Assisted and Reconstructive Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Urology, Sozialstiftung Bamberg, Bamberg, Germany
| | - Ruud Kokx
- Department of Urology, Uro-Oncology, Robot-Assisted and Reconstructive Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anna Hagemeier
- Institute of Medical Statistics and Computational Biology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Axel Heidenreich
- Department of Urology, Uro-Oncology, Robot-Assisted and Reconstructive Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
25
|
Multi-Factorial Analysis of Recurrence and Complications of Lingual Mucosa Graft Urethroplasty for Anterior Urethral Stricture: Experience from a Chinese Referral Center. Urology 2021; 152:96-101. [PMID: 33785402 DOI: 10.1016/j.urology.2021.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To evaluate the risk factors that pertain to stricture recurrence and oral complications. METHODS Patients with long segmented anterior urethral stricture who visited our hospital from 2009 to 2016 were treated with lingual mucosa graft (LMG) urethroplasty. The incidence of complications in all of 128 patients were evaluated. The data were analyzed using the chi-squared test and Fisher's exact test. A multi-factorial regression analysis was performed to identify the risk factors responsible for the recurrence and complications. RESULTS For patients having LMG urethroplasty, there were no significant difference in recurrence of urethral stricture according to the studied variables. Binary logistic regression analysis reveals that previous surgery involving the urethra was a significant predictor of urethral stricture recurrence (odds ratio [OR]=5.07; 95% confidence interval [95% CI], 1.06-24.40; P = .043). The length of the substitute was significantly related to oral morbidity (P = .020), even after controlling for the studied variables. Patients with a harvested oral mucosa longer than 7 cm had a higher risk of oral morbidity than those with a harvested oral mucosa shorter than 7 cm (OR=4.35; 95% CI, 1.35-14.06; P = .014). CONCLUSION Our study shows that LMG urethroplasty is effective for patients with long segmented anterior urethral stricture. Previous urethral surgery was identified as a risk factor to cause recurrence and injury to the tip of the tongue for the oral complications.
Collapse
|
26
|
Maurizi E, Adamo D, Magrelli FM, Galaverni G, Attico E, Merra A, Maffezzoni MBR, Losi L, Genna VG, Sceberras V, Pellegrini G. Regenerative Medicine of Epithelia: Lessons From the Past and Future Goals. Front Bioeng Biotechnol 2021; 9:652214. [PMID: 33842447 PMCID: PMC8026866 DOI: 10.3389/fbioe.2021.652214] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
This article explores examples of successful and unsuccessful regenerative medicine on human epithelia. To evaluate the applications of the first regenerated tissues, the analysis of the past successes and failures addresses some pending issues and lay the groundwork for developing new therapies. Research should still be encouraged to fill the gap between pathologies, clinical applications and what regenerative medicine can attain with current knowledge.
Collapse
Affiliation(s)
| | - Davide Adamo
- Interdepartmental Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Giulia Galaverni
- Interdepartmental Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | - Eustachio Attico
- Interdepartmental Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Lorena Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Graziella Pellegrini
- Holostem Terapie Avanzate S.r.l., Modena, Italy
- Interdepartmental Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
27
|
Vasyutin I, Butnaru D, Lyundup A, Timashev P, Vinarov A, Kuznetsov S, Atala A, Zhang Y. Frontiers in urethra regeneration: current state and future perspective. Biomed Mater 2021; 16. [PMID: 32503009 DOI: 10.1088/1748-605x/ab99d2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022]
Abstract
Despite the positive achievements attained, the treatment of male urethral strictures and hypospadiases still remains a challenge, particularly in cases of severe urethral defects. Complications and the need for additional interventions in such cases are common. Also, shortage of autologous tissue for graft harvesting and significant morbidity in the location of harvesting present problems and often lead to staged treatment. Tissue engineering provides a promising alternative to the current sources of grafts for urethroplasty. Since the first experiments in urethral substitution with tissue engineered grafts, this topic in regenerative medicine has grown remarkably, as many different types of tissue-engineered grafts and approaches in graft design have been suggested and testedin vivo. However, there have been only a few clinical trials of tissue-engineered grafts in urethral substitution, involving hardly more than a hundred patients overall. This indicates that the topic is still in its inception, and the search for the best graft design is continuing. The current review focuses on the state of the art in urethral regeneration with tissue engineering technology. It gives a comprehensive overview of the components of the tissue-engineered graft and an overview of the steps in graft development. Different cell sources, types of scaffolds, assembling approaches, options for vascularization enhancement and preclinical models are considered.
Collapse
Affiliation(s)
- Igor Vasyutin
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Denis Butnaru
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Alexey Lyundup
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Peter Timashev
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Andrey Vinarov
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Sergey Kuznetsov
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, 391 Technology Way NE, Winston-Salem, NC 27101, United States of America
| | - Yuanyuan Zhang
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia.,Wake Forest Institute for Regenerative Medicine, 391 Technology Way NE, Winston-Salem, NC 27101, United States of America
| |
Collapse
|
28
|
Wan X, Zheng D, Yao H, Fu S, Wei Z, Wang Z, Xie M. An extracellular matrix-mimicking, bilayered, heterogeneous, porous, nanofibrous scaffold for anterior urethroplasty in a rabbit model. ACTA ACUST UNITED AC 2020; 15:065008. [PMID: 32580173 DOI: 10.1088/1748-605x/ab9fd0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Anterior urethral reconstruction is still a challenging clinical task, and tissue engineering technology offers new options for anterior urethroplasty. In this work, we evaluated an extracellular matrix (ECM) mimicking scaffold for anterior urethral reconstruction in a New Zealand white rabbit model. After the creation of a urethral defect, the ECM-mimicking scaffold was applied in six rabbits, and small intestinal submucosa (SIS) was used in three rabbits. The outcomes of urethrography and histological analysis were evaluated six months postoperatively. A larger urethral diameter was observed in the ECM-mimicking scaffolds (3.01 ± 0.12 mm) than in the SIS grafts (0.95 ± 0.07 mm). Urethral fistulae and stenosis were observed in the SIS grafts. Urothelial and smooth muscle cells were observed in all rabbits, but the ECM-mimicking scaffold showed better performance. The ECM-mimicking scaffold may be an effective clinical treatment option for congenital and acquired urethral pathologies.
Collapse
Affiliation(s)
- Xiang Wan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, People's Republic of China. These authors have contributed equally
| | | | | | | | | | | | | |
Collapse
|
29
|
Barbagli G, Bandini M, Balò S, Montorsi F, Sansalone S, Dominicis MD, Butnaru D, Lazzeri M. Patient-reported outcomes for typical single cheek harvesting vs atypical lingual, labial or bilateral cheeks harvesting: a single-center analysis of more than 800 patients. World J Urol 2020; 39:2089-2097. [PMID: 32770388 DOI: 10.1007/s00345-020-03400-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/01/2020] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The optimal harvesting site for oral grafting in patients with urethral strictures remain controversial, with no study investigating morbidity on large scale. We aimed to compare typical single cheek harvesting vs atypical lingual, labial or bilateral cheeks harvesting in terms of complications and patient-reported outcomes. METHODS Within 827 patients treated at our referral center with oral graft urethroplasty, we compared typical vs atypical harvesting techniques. A self-administered, semiquantitative, non-validated questionnaire assessed early (10 days) and late (4 months) postoperative complications and patient-reported outcomes. A semiquantitative score was calculated according to patient responses, and it was used to assess early (6 questions) and late (13 questions) patient dissatisfaction status. Patients were defined early and/or late dissatisfied when they scored ≥ 7 and ≥ 10 at the early or late questionnaires, respectively. RESULTS Between 1998 and 2019, our patients predominantly received typical single cheek harvesting (89% vs 11%), with + 1.5% increase rate per year (p < 0.001). Early and late dissatisfied patients were, respectively, 170 (23%) vs 39 (44%) and 59 (8%) vs 16 (18%) in the typical vs atypical groups. Atypical harvesting was associated with higher rates of early (Odds ratio [OR]: 2.34; 95% Confidence interval [CI] 1.44-3.75; p = 0.001) and late (OR: 2.37; 95%CI 1.22-4.42; p = 0.008) postoperative dissatisfaction. CONCLUSIONS Typical single cheek harvesting was the preferred surgical option at our center and it was associated with negligible early and late rates of complications and patient's dissatisfaction. Conversely, atypical lingual, labial or bilateral cheeks harvesting was associated with higher complications and frequent patient dissatisfaction.
Collapse
Affiliation(s)
- Guido Barbagli
- Center for Reconstructive Urethra Surgery, Arezzo, Rome, Milan, Italy.,Centro Chirurgico Toscano, Arezzo, Italy
| | - Marco Bandini
- Centro Chirurgico Toscano, Arezzo, Italy. .,Unit of Urology, Urological Research Institute (URI), IRCCS Ospedale San Raffaele Hospital, Via Olgettina 60, Vita-Salute San Raffaele University, 20132, Milan, Italy.
| | - Sofia Balò
- Centro Chirurgico Toscano, Arezzo, Italy
| | - Francesco Montorsi
- Unit of Urology, Urological Research Institute (URI), IRCCS Ospedale San Raffaele Hospital, Via Olgettina 60, Vita-Salute San Raffaele University, 20132, Milan, Italy
| | | | | | - Denis Butnaru
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Massimo Lazzeri
- Department of Urology, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milano, Italy
| |
Collapse
|
30
|
Liu Y, Huang L, Yuan W, Zhang D, Gu Y, Huang J, Murphy S, Ali M, Zhang Y, Song L. Sustained release of stromal cell-derived factor-1 alpha from silk fibroin microfiber promotes urethral reconstruction in rabbits. J Biomed Mater Res A 2020; 108:1760-1773. [PMID: 32276293 DOI: 10.1002/jbm.a.36943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
Abstract
We developed a stromal cell-derived factor-1 alpha (SDF-1α)-aligned silk fibroin (SF)/three-dimensional porous bladder acellular matrix graft (3D-BAMG) composite scaffold for long-section ventral urethral regeneration and repair in vivo. SDF-1α-aligned SF microfiber/3D-BAMG, aligned SF microfiber/3D-BAMG, and nonaligned SF microfiber/3D-BAMG scaffolds were prepared using electrostatic spinning and wet processing. Adipose-derived stem cell (ADSC) and bone marrow stromal cell (BMSC) migration was assessed in the SDF-1α-loaded scaffolds. Sustained SDF-1α release in vitro and vivo was analyzed using enzyme-linked immunosorbent assay (ELISA) and western blotting, respectively. The scaffolds were used to repair a 1.5 × 1 cm2 ventral urethral defect in male rabbits in vivo. General observation and retrograde urinary tract contrast assessment were used to examine urethral lumen patency and continuity at 1 and 3 months post-surgery. Postoperative rehabilitation was evaluated using histological detection. The composite scaffolds sustained SDF-1α release for over 16 days in vitro. SDF-1α-aligned SF nanofiber promoted regeneration of urethral mucosa, submucosal smooth muscles, and microvasculature, increased cellular proliferation, and reduced collagen deposition. SDF-1α expression was increased in reconstructed urethra at 3 months post-surgery in SDF-1α-aligned SF group. SDF-1α-aligned SF microfiber/3D-BAMG scaffolds may be used to repair and reconstruct long urethral defects because they accelerate urethral regeneration.
Collapse
Affiliation(s)
- Yang Liu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China.,Department of Urology, Weifang People's Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Li Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Wei Yuan
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China.,Department of Urology, Weifang People's Hospital, Weifang Medical University, Weifang, Shandong, China.,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Dongliang Zhang
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yubo Gu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jianwen Huang
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Sean Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Mohamed Ali
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina.,Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Lujie Song
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Urethrotomy remains the first-line therapy in the treatment of a urethral stricture despite data showing no real chance of a cure after repeated urethroplasties. An anastomotic or an augmentation urethroplasty with oral mucosa should be offered to patients with a failed urethrotomy. The availability of grafts can be a concern for both patients and surgeons. The potential for a tissue-engineered solution has been explored in recent years and is explored in this article. RECENT FINDINGS More than 80 preclinical studies have investigated a tissue-engineered approach for urethral reconstruction mostly using decellularized natural scaffolds with or without cell seeding. The animal models used in preclinical testing are not representative of disease processes seen with strictures in man. The available clinical studies were of small sample size and lacked control groups. The choice of biomaterial were mostly acellular matrices derived from natural extracellular matrix. The reported success rates in the pilot clinical studies were highly variable. SUMMARY The research with tissue engineering of the urethra has not yet been translated into a clinically available material. This is an area where much more research is needed and we would conclude that it is an area of unmet clinical need where users of tissue-engineered urethra in the future need to carry out a rigorous basic science programme and need to be cautious in drawing conclusions based on initial experience and report on long-term clinical results.
Collapse
|
32
|
Risk calculator for prediction of treatment-related urethroplasty failure in patients with penile urethral strictures. Int Urol Nephrol 2020; 52:1079-1085. [PMID: 32002746 DOI: 10.1007/s11255-020-02397-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/21/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE To design a dedicated risk calculator for patients with penile urethra stricture who are scheduled to urethroplasty that might be used to counsel patients according to their pre-operative risk of failure. METHODS Patients treated with penile urethroplasty at our center (1994-2018) were included in the study. Patients received 1-stage or staged penile urethroplasty. Patients with failed hypospadias repair, lichen sclerosus or incomplete clinical records were excluded. Treatment failure was defined as any required postoperative instrumentation, including dilation. Univariable Cox regression identified predictors of post-operative treatment failure and Kaplan-Meier analysis plotted the failure-free survival rates according to such predictors. Multivariable Cox regression-based risk calculator was generated to predict the risk of treatment failure at 10 years after surgery. RESULTS 261 patients met the inclusion criteria. Median follow-up was 113 months. Out of 216 patients, 201 (77%) were classified as success and 60 (23%) failures. Former smoker (hazard ratio [HR] 2.12, p = 0.025), instrumentation-derived stricture (HR 2.55, p = 0.006), and use of grafts (HR 1.83, p = 0.037) were predictors of treatment failure. Model-derived probabilities showed that the 10-year risk of treatment failure varied from 5.8 to 41.1% according to patient's characteristics. CONCLUSIONS Long-term prognosis in patients who underwent penile urethroplasty is uncertain. To date, our risk-calculator represents the first tool that might help physicians to predict the risk of treatment failure at 10 years. According to our model, such risk is largely influenced by the etiology of the stricture, the use of graft, and patient's smoking habits.
Collapse
|
33
|
Barbagli G, Heidenreich A, Zugor V, Karapanos L, Lazzeri M. Urothelial or oral mucosa cells for tissue-engineered urethroplasty: A critical revision of the clinical outcome. Asian J Urol 2020; 7:18-23. [PMID: 31970067 PMCID: PMC6962743 DOI: 10.1016/j.ajur.2018.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/13/2018] [Accepted: 12/06/2018] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To report the clinical outcome of urethral reconstruction by cultured urothelial or oral mucosa cells for tissue-engineered urethroplasty. METHODS We systematically searched for studies reporting the use of tissue-engineered techniques for hypospadias and urethral stricture repair in humans in PubMed and Embase (OvidSP) through January, 1990 to June, 2018. We excluded studies based on titles that clearly were not related to the subject, studies in which tissue-engineered biomaterial were used only in laboratory or experimental animals, and in the absence of autologous cultured epithelial cells. Studies were also excluded if they were not published in English, had no disease background and adequate follow-up. Finally, we search all relevant abstract presented at two of the main urological meetings in the last 10 years: European Association of Urology (EAU) and American Urological Association (AUA). RESULTS A total of six articles, reporting the clinical use of tissue-engineered techniques in humans, were fully reviewed in our review. The epithelial cells were harvested from the urethra (10 patients), the bladder (11 patients) and the mouth (104 patients). The tissue-engineered grafts were used in children for primary hypospadias repair in 16 cases, and in adults for posterior and anterior urethral strictures repair in 109 cases. Tissue-engineered grafts were showed working better in children for primary hypospadias repair than in adults for urethral strictures repair. CONCLUSION One hundred and twenty-five patients received tissue-engineered urethroplasty using cultured epithelial cells for primary hypospadias or urethral strictures repair. The studies demonstrate a high degree of heterogeneity respect to epithelial cells (from urethra, bladder, and mouth), type of scaffold, etiology, site of urethral stricture, number of patients, follow-up and outcomes.
Collapse
Affiliation(s)
- Guido Barbagli
- Centro Chirurgico Toscano, Arezzo, Italy
- Research Institute for Uronephrology, Sechenov, First Moscow State Medical University, Moscow, Russia
| | | | - Vahudin Zugor
- University Clinic and Policlinic for Urology, Cologne, Germany
| | | | - Massimo Lazzeri
- Istituto Clinico Humanitas IRCCS, Clinical and Research Hospital, Rozzano, Italy
| |
Collapse
|
34
|
Pederzoli F, Joice G, Salonia A, Bivalacqua TJ, Sopko NA. Regenerative and engineered options for urethroplasty. Nat Rev Urol 2019; 16:453-464. [PMID: 31171866 DOI: 10.1038/s41585-019-0198-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2019] [Indexed: 02/07/2023]
Abstract
Surgical correction of urethral strictures by substitution urethroplasty - the use of grafts or flaps to correct the urethral narrowing - remains one of the most challenging procedures in urology and is frequently associated with complications, restenosis and poor quality of life for the affected individual. Tissue engineering using different cell types and tissue scaffolds offers a promising alternative for tissue repair and replacement. The past 30 years of tissue engineering has resulted in the development of several therapies that are now in use in the clinic, especially in treating cutaneous, bone and cartilage defects. Advances in tissue engineering for urethral replacement have resulted in several clinical applications that have shown promise but have not yet become the standard of care.
Collapse
Affiliation(s)
- Filippo Pederzoli
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Gregory Joice
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Trinity J Bivalacqua
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Nikolai A Sopko
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| |
Collapse
|
35
|
Scott KA, Li G, Manwaring J, Nikolavsky DA, Fudym Y, Caza T, Badar Z, Taylor N, Bratslavsky G, Kotula L, Nikolavsky D. Liquid buccal mucosa graft endoscopic urethroplasty: a validation animal study. World J Urol 2019; 38:2139-2145. [PMID: 31175459 DOI: 10.1007/s00345-019-02840-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/03/2019] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To validate a novel method of urethral stricture treatment using liquid buccal mucosal grafts (LBMG) to augment direct vision internal urethrotomy (DVIU) in an animal model. MATERIALS AND METHODS A rabbit stricture model was used to test this method. Strictures were induced in 26 rabbits using electroresection of urethral epithelium. The animals were randomized into two groups: Group-1, treated with DVIU and LBMG in fibrin glue, and Group-2, DVIU with fibrin glue only. LBMG was prepared by suspension of mechanically minced buccal mucosa micrografts in fibrin glue. This LBMG-fibrin glue mixture was later injected into the urethrotomies of Group-1 animals. All animals were killed at 24 weeks after repeat retrograde urethrogram (RUG) and urethroscopy by surgeon blinded to the treatment arm. Radiographic images and histological specimens were reviewed by a radiologist and a pathologist, respectively, blinded to the treatment arm. Stricture treatment was considered a success if a diameter measured on RUG increased by ≥ 50% compared to pre-treatment RUG diameter. Histological specimens were assessed for the presence of BMG engraftment. RESULTS In Group-1, 8/12(67%) animals demonstrated engraftment of LBMG, compared to none in Group-2 (p = 0.0005). 7/12(58%) in Group-1 showed radiographic resolution/improvement of strictures compared to 5/13 Group-2 rabbits (38%, p = 0.145). The median percent change for the Group-1 was 59%, compared to 41.6% for Group-2 (p = 0.29). CONCLUSION This proof-of-concept study demonstrates feasibility of LBMG for endoscopic urethral stricture repairs. Further studies are needed to establish the role of this novel concept in treatment of urethral strictures.
Collapse
Affiliation(s)
- Kathryn A Scott
- Department of Urology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Guanqun Li
- Department of Urology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Jared Manwaring
- Department of Urology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Daniela A Nikolavsky
- Department of Urology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Yelena Fudym
- Department of Pathology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Tiffany Caza
- Department of Pathology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Zain Badar
- Department of Radiology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Nicole Taylor
- Department of Radiology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Gennady Bratslavsky
- Department of Urology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Leszek Kotula
- Department of Urology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Dmitriy Nikolavsky
- Department of Urology, State University of New York Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
36
|
A Comprehensive Review Emphasizing Anatomy, Etiology, Diagnosis, and Treatment of Male Urethral Stricture Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9046430. [PMID: 31139658 PMCID: PMC6500724 DOI: 10.1155/2019/9046430] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/31/2019] [Indexed: 12/21/2022]
Abstract
To date, urethral stricture disease in men, though relatively common, represents an often poorly managed condition. Therefore, this article is dedicated to encompassing the currently existing data upon anatomy, etiology, symptoms, diagnosis, and treatment of the disease, based on more than 40 years of experience at a tertiary referral center and a PubMed literature review enclosing publications until September 2018.
Collapse
|