1
|
Gonzalez R, Saha A, Campbell CJ, Nejat P, Lokker C, Norgan AP. Seeing the random forest through the decision trees. Supporting learning health systems from histopathology with machine learning models: Challenges and opportunities. J Pathol Inform 2024; 15:100347. [PMID: 38162950 PMCID: PMC10755052 DOI: 10.1016/j.jpi.2023.100347] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/06/2023] [Accepted: 11/01/2023] [Indexed: 01/03/2024] Open
Abstract
This paper discusses some overlooked challenges faced when working with machine learning models for histopathology and presents a novel opportunity to support "Learning Health Systems" with them. Initially, the authors elaborate on these challenges after separating them according to their mitigation strategies: those that need innovative approaches, time, or future technological capabilities and those that require a conceptual reappraisal from a critical perspective. Then, a novel opportunity to support "Learning Health Systems" by integrating hidden information extracted by ML models from digitalized histopathology slides with other healthcare big data is presented.
Collapse
Affiliation(s)
- Ricardo Gonzalez
- DeGroote School of Business, McMaster University, Hamilton, Ontario, Canada
- Division of Computational Pathology and Artificial Intelligence, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Ashirbani Saha
- Department of Oncology, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Escarpment Cancer Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Clinton J.V. Campbell
- William Osler Health System, Brampton, Ontario, Canada
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Peyman Nejat
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, United States
| | - Cynthia Lokker
- Health Information Research Unit, Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Andrew P. Norgan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
2
|
Delpino FM, Costa ÂK, César do Nascimento M, Dias Moura HS, Geremias Dos Santos H, Wichmann RM, Porto Chiavegatto Filho AD, Arcêncio RA, Nunes BP. Does machine learning have a high performance to predict obesity among adults and older adults? A systematic review and meta-analysis. Nutr Metab Cardiovasc Dis 2024; 34:2034-2045. [PMID: 39004592 DOI: 10.1016/j.numecd.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/27/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024]
Abstract
AIM Machine learning may be a tool with the potential for obesity prediction. This study aims to review the literature on the performance of machine learning models in predicting obesity and to quantify the pooled results through a meta-analysis. DATA SYNTHESIS A systematic review and meta-analysis were conducted, including studies that used machine learning to predict obesity. Searches were conducted in October 2023 across databases including LILACS, Web of Science, Scopus, Embase, and CINAHL. We included studies that utilized classification models and reported results in the Area Under the ROC Curve (AUC) (PROSPERO registration: CRD42022306940), without imposing restrictions on the year of publication. The risk of bias was assessed using an adapted version of the Transparent Reporting of a multivariable prediction model for individual Prognosis or Diagnosis (TRIPOD). Meta-analysis was conducted using MedCalc software. A total of 14 studies were included, with the majority demonstrating satisfactory performance for obesity prediction, with AUCs exceeding 0.70. The random forest algorithm emerged as the top performer in obesity prediction, achieving an AUC of 0.86 (95%CI: 0.76-0.96; I2: 99.8%), closely followed by logistic regression with an AUC of 0.85 (95%CI: 0.75-0.95; I2: 99.6%). The least effective model was gradient boosting, with an AUC of 0.77 (95%CI: 0.71-0.82; I2: 98.1%). CONCLUSION Machine learning models demonstrated satisfactory predictive performance for obesity. However, future research should utilize more comparable data, larger databases, and a broader range of machine learning models.
Collapse
Affiliation(s)
- Felipe Mendes Delpino
- Postgraduate Program in Nursing, Federal University of Pelotas. Pelotas, Rio Grande do Sul, Brazil; Postgraduate Program in Public Health Nursing, University of São Paulo, Ribeirão Preto, Brazil.
| | - Ândria Krolow Costa
- Postgraduate Program in Nursing, Federal University of Pelotas. Pelotas, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | | - Bruno Pereira Nunes
- Postgraduate Program in Nursing, Federal University of Pelotas. Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
Elvidge J, Hawksworth C, Avşar TS, Zemplenyi A, Chalkidou A, Petrou S, Petykó Z, Srivastava D, Chandra G, Delaye J, Denniston A, Gomes M, Knies S, Nousios P, Siirtola P, Wang J, Dawoud D. Consolidated Health Economic Evaluation Reporting Standards for Interventions That Use Artificial Intelligence (CHEERS-AI). VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2024; 27:1196-1205. [PMID: 38795956 PMCID: PMC11343728 DOI: 10.1016/j.jval.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/28/2024]
Abstract
OBJECTIVES Economic evaluations (EEs) are commonly used by decision makers to understand the value of health interventions. The Consolidated Health Economic Evaluation Reporting Standards (CHEERS 2022) provide reporting guidelines for EEs. Healthcare systems will increasingly see new interventions that use artificial intelligence (AI) to perform their function. We developed Consolidated Health Economic Evaluation Reporting Standards for Interventions that use AI (CHEERS-AI) to ensure EEs of AI-based health interventions are reported in a transparent and reproducible manner. METHODS Potential CHEERS-AI reporting items were informed by 2 published systematic literature reviews of EEs and a contemporary update. A Delphi study was conducted using 3 survey rounds to elicit multidisciplinary expert views on 26 potential items, through a 9-point Likert rating scale and qualitative comments. An online consensus meeting was held to finalize outstanding reporting items. A digital health patient group reviewed the final checklist from a patient perspective. RESULTS A total of 58 participants responded to survey round 1, 42, and 31 of whom responded to rounds 2 and 3, respectively. Nine participants joined the consensus meeting. Ultimately, 38 reporting items were included in CHEERS-AI. They comprised the 28 original CHEERS 2022 items, plus 10 new AI-specific reporting items. Additionally, 8 of the original CHEERS 2022 items were elaborated on to ensure AI-specific nuance is reported. CONCLUSIONS CHEERS-AI should be used when reporting an EE of an intervention that uses AI to perform its function. CHEERS-AI will help decision makers and reviewers to understand important AI-specific details of an intervention, and any implications for the EE methods used and cost-effectiveness conclusions.
Collapse
Affiliation(s)
- Jamie Elvidge
- National Institute for Health and Care Excellence (NICE), England, UK.
| | - Claire Hawksworth
- National Institute for Health and Care Excellence (NICE), England, UK
| | - Tuba Saygın Avşar
- National Institute for Health and Care Excellence (NICE), England, UK
| | - Antal Zemplenyi
- Center for Health Technology Assessment and Pharmacoeconomic Research, University of Pécs, Pécs, Hungary; University of Colorado Anschutz Medical Campus, Denver, CO, USA; Syreon Research Institute, Budapest, Hungary
| | | | - Stavros Petrou
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, England, UK
| | | | - Divya Srivastava
- Department of Health Policy, London School of Economics and Political Science, London, England, UK
| | - Gunjan Chandra
- Biomimetics and Intelligent Systems Group, University of Oulu, Oulu, Finland
| | | | - Alastair Denniston
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, England, UK
| | - Manuel Gomes
- Department of Primary Care and Population Health, University College London, England, UK
| | - Saskia Knies
- National Healthcare Institute (ZIN), Diemen, The Netherlands
| | - Petros Nousios
- Dental and Pharmaceutical Benefits Agency (TLV), Stockholm, Sweden
| | - Pekka Siirtola
- Biomimetics and Intelligent Systems Group, University of Oulu, Oulu, Finland
| | - Junfeng Wang
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University, Utrecht, The Netherlands
| | - Dalia Dawoud
- National Institute for Health and Care Excellence (NICE), England, UK
| |
Collapse
|
4
|
Zwerwer LR, van der Pol S, Zacharowski K, Postma MJ, Kloka J, Friedrichson B, van Asselt ADI. The value of artificial intelligence for the treatment of mechanically ventilated intensive care unit patients: An early health technology assessment. J Crit Care 2024; 82:154802. [PMID: 38583302 DOI: 10.1016/j.jcrc.2024.154802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/03/2024] [Accepted: 03/23/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE The health and economic consequences of artificial intelligence (AI) systems for mechanically ventilated intensive care unit patients often remain unstudied. Early health technology assessments (HTA) can examine the potential impact of AI systems by using available data and simulations. Therefore, we developed a generic health-economic model suitable for early HTA of AI systems for mechanically ventilated patients. MATERIALS AND METHODS Our generic health-economic model simulates mechanically ventilated patients from their hospitalisation until their death. The model simulates two scenarios, care as usual and care with the AI system, and compares these scenarios to estimate their cost-effectiveness. RESULTS The generic health-economic model we developed is suitable for estimating the cost-effectiveness of various AI systems. By varying input parameters and assumptions, the model can examine the cost-effectiveness of AI systems across a wide range of different clinical settings. CONCLUSIONS Using the proposed generic health-economic model, investors and innovators can easily assess whether implementing a certain AI system is likely to be cost-effective before an exact clinical impact is determined. The results of the early HTA can aid investors and innovators in deployment of AI systems by supporting development decisions, informing value-based pricing, clinical trial design, and selection of target patient groups.
Collapse
Affiliation(s)
- Leslie R Zwerwer
- Department of Health Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Simon van der Pol
- Department of Health Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Health-Ecore, Zeist, the Netherlands
| | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Maarten J Postma
- Department of Health Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Health-Ecore, Zeist, the Netherlands; Department of Economics, Econometrics and Finance, University of Groningen, Faculty of Economics and Business, Groningen, the Netherlands; Center of Excellence for Pharmaceutical Care, Universitas Padjadjaran, Bandung, Indonesia
| | - Jan Kloka
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Benjamin Friedrichson
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Antoinette D I van Asselt
- Department of Health Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
5
|
Fischer A, Rietveld A, Teunissen P, Hoogendoorn M, Bakker P. What is the future of artificial intelligence in obstetrics? A qualitative study among healthcare professionals. BMJ Open 2023; 13:e076017. [PMID: 37879682 PMCID: PMC10603416 DOI: 10.1136/bmjopen-2023-076017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
OBJECTIVE This work explores the perceptions of obstetrical clinicians about artificial intelligence (AI) in order to bridge the gap in uptake of AI between research and medical practice. Identifying potential areas where AI can contribute to clinical practice, enables AI research to align with the needs of clinicians and ultimately patients. DESIGN Qualitative interview study. SETTING A national study conducted in the Netherlands between November 2022 and February 2023. PARTICIPANTS Dutch clinicians working in obstetrics with varying relevant work experience, gender and age. ANALYSIS Thematic analysis of qualitative interview transcripts. RESULTS Thirteen gynaecologists were interviewed about hypothetical scenarios of an implemented AI model. Thematic analysis identified two major themes: perceived usefulness and trust. Usefulness involved AI extending human brain capacity in complex pattern recognition and information processing, reducing contextual influence and saving time. Trust required validation, explainability and successful personal experience. This result shows two paradoxes: first, AI is expected to provide added value by surpassing human capabilities, yet also a need to understand the parameters and their influence on predictions for trust and adoption was expressed. Second, participants recognised the value of incorporating numerous parameters into a model, but they also believed that certain contextual factors should only be considered by humans, as it would be undesirable for AI models to use that information. CONCLUSIONS Obstetricians' opinions on the potential value of AI highlight the need for clinician-AI researcher collaboration. Trust can be built through conventional means like randomised controlled trials and guidelines. Holistic impact metrics, such as changes in workflow, not just clinical outcomes, should guide AI model development. Further research is needed for evaluating evolving AI systems beyond traditional validation methods.
Collapse
Affiliation(s)
- Anne Fischer
- Department of Obstetrics and Gynecology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Anna Rietveld
- Department of Obstetrics and Gynecology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Pim Teunissen
- School of Health Professions Education, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Gynaecology & Obstetrics, Maastricht UMC, Maastricht, The Netherlands
| | - Mark Hoogendoorn
- Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Petra Bakker
- Department of Obstetrics and Gynecology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Ruamviboonsuk P, Ruamviboonsuk V, Tiwari R. Recent evidence of economic evaluation of artificial intelligence in ophthalmology. Curr Opin Ophthalmol 2023; 34:449-458. [PMID: 37459289 DOI: 10.1097/icu.0000000000000987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
PURPOSE OF REVIEW Health economic evaluation (HEE) is essential for assessing value of health interventions, including artificial intelligence. Recent approaches, current challenges, and future directions of HEE of artificial intelligence in ophthalmology are reviewed. RECENT FINDINGS Majority of recent HEEs of artificial intelligence in ophthalmology were for diabetic retinopathy screening. Two models, one conducted in the rural USA (5-year period) and another in China (35-year period), found artificial intelligence to be more cost-effective than without screening for diabetic retinopathy. Two additional models, which compared artificial intelligence with human screeners in Brazil and Thailand for the lifetime of patients, found artificial intelligence to be more expensive from a healthcare system perspective. In the Thailand analysis, however, artificial intelligence was less expensive when opportunity loss from blindness was included. An artificial intelligence model for screening retinopathy of prematurity was cost-effective in the USA. A model for screening age-related macular degeneration in Japan and another for primary angle close in China did not find artificial intelligence to be cost-effective, compared with no screening. The costs of artificial intelligence varied widely in these models. SUMMARY Like other medical fields, there is limited evidence in assessing the value of artificial intelligence in ophthalmology and more appropriate HEE models are needed.
Collapse
Affiliation(s)
- Paisan Ruamviboonsuk
- Department of Ophthalmology, Rajavithi Hospital, College of Medicine, Rangsit University
| | | | | |
Collapse
|
7
|
Vithlani J, Hawksworth C, Elvidge J, Ayiku L, Dawoud D. Economic evaluations of artificial intelligence-based healthcare interventions: a systematic literature review of best practices in their conduct and reporting. Front Pharmacol 2023; 14:1220950. [PMID: 37693892 PMCID: PMC10486896 DOI: 10.3389/fphar.2023.1220950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023] Open
Abstract
Objectives: Health economic evaluations (HEEs) help healthcare decision makers understand the value of new technologies. Artificial intelligence (AI) is increasingly being used in healthcare interventions. We sought to review the conduct and reporting of published HEEs for AI-based health interventions. Methods: We conducted a systematic literature review with a 15-month search window (April 2021 to June 2022) on 17th June 2022 to identify HEEs of AI health interventions and update a previous review. Records were identified from 3 databases (Medline, Embase, and Cochrane Central). Two reviewers screened papers against predefined study selection criteria. Data were extracted from included studies using prespecified data extraction tables. Included studies were quality assessed using the National Institute for Health and Care Excellence (NICE) checklist. Results were synthesized narratively. Results: A total of 21 studies were included. The most common type of AI intervention was automated image analysis (9/21, 43%) mainly used for screening or diagnosis in general medicine and oncology. Nearly all were cost-utility (10/21, 48%) or cost-effectiveness analyses (8/21, 38%) that took a healthcare system or payer perspective. Decision-analytic models were used in 16/21 (76%) studies, mostly Markov models and decision trees. Three (3/16, 19%) used a short-term decision tree followed by a longer-term Markov component. Thirteen studies (13/21, 62%) reported the AI intervention to be cost effective or dominant. Limitations tended to result from the input data, authorship conflicts of interest, and a lack of transparent reporting, especially regarding the AI nature of the intervention. Conclusion: Published HEEs of AI-based health interventions are rapidly increasing in number. Despite the potentially innovative nature of AI, most have used traditional methods like Markov models or decision trees. Most attempted to assess the impact on quality of life to present the cost per QALY gained. However, studies have not been comprehensively reported. Specific reporting standards for the economic evaluation of AI interventions would help improve transparency and promote their usefulness for decision making. This is fundamental for reimbursement decisions, which in turn will generate the necessary data to develop flexible models better suited to capturing the potentially dynamic nature of AI interventions.
Collapse
Affiliation(s)
- Jai Vithlani
- National Institute for Health and Care Excellence, London, United Kingdom
| | - Claire Hawksworth
- National Institute for Health and Care Excellence, Manchester, United Kingdom
| | - Jamie Elvidge
- National Institute for Health and Care Excellence, Manchester, United Kingdom
| | - Lynda Ayiku
- National Institute for Health and Care Excellence, Manchester, United Kingdom
| | - Dalia Dawoud
- National Institute for Health and Care Excellence, London, United Kingdom
- Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
de Hond AAH, Kant IMJ, Fornasa M, Cinà G, Elbers PWG, Thoral PJ, Sesmu Arbous M, Steyerberg EW. Predicting Readmission or Death After Discharge From the ICU: External Validation and Retraining of a Machine Learning Model. Crit Care Med 2023; 51:291-300. [PMID: 36524820 PMCID: PMC9848213 DOI: 10.1097/ccm.0000000000005758] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Many machine learning (ML) models have been developed for application in the ICU, but few models have been subjected to external validation. The performance of these models in new settings therefore remains unknown. The objective of this study was to assess the performance of an existing decision support tool based on a ML model predicting readmission or death within 7 days after ICU discharge before, during, and after retraining and recalibration. DESIGN A gradient boosted ML model was developed and validated on electronic health record data from 2004 to 2021. We performed an independent validation of this model on electronic health record data from 2011 to 2019 from a different tertiary care center. SETTING Two ICUs in tertiary care centers in The Netherlands. PATIENTS Adult patients who were admitted to the ICU and stayed for longer than 12 hours. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We assessed discrimination by area under the receiver operating characteristic curve (AUC) and calibration (slope and intercept). We retrained and recalibrated the original model and assessed performance via a temporal validation design. The final retrained model was cross-validated on all data from the new site. Readmission or death within 7 days after ICU discharge occurred in 577 of 10,052 ICU admissions (5.7%) at the new site. External validation revealed moderate discrimination with an AUC of 0.72 (95% CI 0.67-0.76). Retrained models showed improved discrimination with AUC 0.79 (95% CI 0.75-0.82) for the final validation model. Calibration was poor initially and good after recalibration via isotonic regression. CONCLUSIONS In this era of expanding availability of ML models, external validation and retraining are key steps to consider before applying ML models to new settings. Clinicians and decision-makers should take this into account when considering applying new ML models to their local settings.
Collapse
Affiliation(s)
- Anne A H de Hond
- Department of Information Technology and Digital Innovation, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Biomedical Informatics, Stanford Medicine, Stanford, CA
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ilse M J Kant
- Department of Information Technology and Digital Innovation, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Giovanni Cinà
- Pacmed, Stadhouderskade 55, Amsterdam, The Netherlands
- Institute of Logic, Language and Computation, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul W G Elbers
- Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam UMC, Amsterdam, The Netherlands
| | - Patrick J Thoral
- Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam UMC, Amsterdam, The Netherlands
| | - M Sesmu Arbous
- Department of Intensive Care Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ewout W Steyerberg
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
9
|
Kushniruk A, de Hond AAH, Thoral PJ, Steyerberg EW, Kant IMJ, Cinà G, Arbous MS. Intensive Care Unit Physicians' Perspectives on Artificial Intelligence-Based Clinical Decision Support Tools: Preimplementation Survey Study. JMIR Hum Factors 2023; 10:e39114. [PMID: 36602843 PMCID: PMC9853335 DOI: 10.2196/39114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Artificial intelligence-based clinical decision support (AI-CDS) tools have great potential to benefit intensive care unit (ICU) patients and physicians. There is a gap between the development and implementation of these tools. OBJECTIVE We aimed to investigate physicians' perspectives and their current decision-making behavior before implementing a discharge AI-CDS tool for predicting readmission and mortality risk after ICU discharge. METHODS We conducted a survey of physicians involved in decision-making on discharge of patients at two Dutch academic ICUs between July and November 2021. Questions were divided into four domains: (1) physicians' current decision-making behavior with respect to discharging ICU patients, (2) perspectives on the use of AI-CDS tools in general, (3) willingness to incorporate a discharge AI-CDS tool into daily clinical practice, and (4) preferences for using a discharge AI-CDS tool in daily workflows. RESULTS Most of the 64 respondents (of 93 contacted, 69%) were familiar with AI (62/64, 97%) and had positive expectations of AI, with 55 of 64 (86%) believing that AI could support them in their work as a physician. The respondents disagreed on whether the decision to discharge a patient was complex (23/64, 36% agreed and 22/64, 34% disagreed); nonetheless, most (59/64, 92%) agreed that a discharge AI-CDS tool could be of value. Significant differences were observed between physicians from the 2 academic sites, which may be related to different levels of involvement in the development of the discharge AI-CDS tool. CONCLUSIONS ICU physicians showed a favorable attitude toward the integration of AI-CDS tools into the ICU setting in general, and in particular toward a tool to predict a patient's risk of readmission and mortality within 7 days after discharge. The findings of this questionnaire will be used to improve the implementation process and training of end users.
Collapse
Affiliation(s)
| | - Anne A H de Hond
- Clinical AI Implementation and Research Lab, Leiden University Medical Center, Leiden, Netherlands.,Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Patrick J Thoral
- Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Ewout W Steyerberg
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Ilse M J Kant
- Clinical AI Implementation and Research Lab, Leiden University Medical Center, Leiden, Netherlands.,Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Giovanni Cinà
- Pacmed, Amsterdam, Netherlands.,Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam, Netherlands.,Department of Medical Informatics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - M Sesmu Arbous
- Department of Intensive Care Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
10
|
Whicher D, Rapp T. The Value of Artificial Intelligence for Healthcare Decision Making-Lessons Learned. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2022; 25:328-330. [PMID: 35227442 DOI: 10.1016/j.jval.2021.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Affiliation(s)
| | - Thomas Rapp
- University of Paris, Paris, France; Sciences Po, LIEPP, Paris, France
| |
Collapse
|