1
|
Müller N, Gylstorff S, Walles H, Gerlach T, Belker O, Zanasi A, Punzet D, Kopp S. 3D-cell phantom-experimental setup to assess thermal effects and cell viability of lung tumor cells after electroporation. Sci Rep 2024; 14:27144. [PMID: 39511318 DOI: 10.1038/s41598-024-78339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Medical devices and technologies must undergo extensive testing and validation before being certified for public healthcare use, especially in oncology where a high research focus is on new advancements. Human 3D-tissue models can offer valuable insights into cancer behavior and treatment efficacy. This study developed a cell phantom setup using a rattail collagen-based hydrogel to facilitate reproducible investigations into ablation techniques, focusing on electroporation (EP) for lung tumor cells. The temperature rise due to the treatment is a critical aspect based on other studies that have discovered non-neglectable temperature values. A realistic physiological, biological phantom is crucial for electrode material development, non-thermal ablation control, tumor cell behavior study, and image-guided treatment simulation. The test system comprises a standardized 3D-printed setup, a cell-mimicking hydrogel model cultivated with NIH3T3 and HCC-827 cell lines. The treatment is evaluated with an AlamarBlue assay and the temperature is monitored with a sensor and a non-invasive MR-thermometry. Results showed the reliability of the selected monitoring methods and especially the temperature monitoring displayed interesting insights. The thermal effect due to EP cannot be neglected and it has to be discussed if this technique is non-thermal. The lesions in the phantom were able to show apoptotic and necrotic regions. The EP further led to a change in viability. These results suggest that the phantom can mimic the response of soft tissue and is a useful tool for studying cellular response and damage caused by EP or other treatment techniques.
Collapse
Affiliation(s)
- Noah Müller
- Core Facility Tissue Engineering, Otto-von-Guericke University Magdeburg, Pfälzerstr.2, 39106, Magdeburg, Germany
| | - Severin Gylstorff
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, University Hospital Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Heike Walles
- Core Facility Tissue Engineering, Otto-von-Guericke University Magdeburg, Pfälzerstr.2, 39106, Magdeburg, Germany
| | - Thomas Gerlach
- Research Campus STIMULATE, Otto-von-Guericke University Magdeburg, Otto-Hahn-Straße 2, 39106, Magdeburg, Germany
| | - Othmar Belker
- Research Campus STIMULATE, Otto-von-Guericke University Magdeburg, Otto-Hahn-Straße 2, 39106, Magdeburg, Germany
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Alessandro Zanasi
- IGEA Zwgn. Deutschland, Feilitzschstraße 1, 80802, Munich, Germany
- Clinical Biophysics Laboratory, IGEA S.p.A, Via Parmenide 10a, Carpi, Italy
| | - Daniel Punzet
- Research Campus STIMULATE, Otto-von-Guericke University Magdeburg, Otto-Hahn-Straße 2, 39106, Magdeburg, Germany
| | - Sascha Kopp
- Core Facility Tissue Engineering, Otto-von-Guericke University Magdeburg, Pfälzerstr.2, 39106, Magdeburg, Germany.
| |
Collapse
|
2
|
Frühling P, Stillström D, Holmquist F, Nilsson A, Freedman J. Change in tissue resistance after irreversible electroporation in liver tumors as an indicator of treatment success - A multi-center analysis with long term follow-up. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108508. [PMID: 38950490 DOI: 10.1016/j.ejso.2024.108508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024]
Abstract
INTRODUCTION A nationwide multicenter study was performed to examine whether there is a correlation between decrease in tissue resistance and time to local tumor recurrence after irreversible electroporation (IRE) in patients with hepatocellular carcinoma (HCC) and colorectal cancer liver metastases (CRCLM). METHODS All patients treated with IRE for liver tumors in Sweden from 2011 until 2018 were included. Patient characteristics and recurrence patterns were obtained from medical records and radiological imaging. All procedural data from the IRE hardware at the three hospitals performing IRE were retrieved. The resistance during each pulse and the change during each treatment were calculated. The electrode pair with the smallest decrease in tissue resistance was used and compared with the time to LTP. RESULTS 149 patients with 206 tumors were treated. Exclusion due to missing and inaccurate data resulted in 124 patients with 170 tumors for the analyses. In a multivariable Cox regression model, a smaller decrease in tissue resistance and larger tumor size were associated with shorter time to local tumor recurrence for CRCLM, but not for HCC. CONCLUSION There was an association between a decrease in tissue resistance and time to local tumor recurrence for CRCLM. The decrease in resistance, in combination with a rise in current, may be the parameters the interventionist should use during IRE to decide if the treatment is successful.
Collapse
Affiliation(s)
- Petter Frühling
- Department of Surgical Sciences, Uppsala University, Uppsala Sweden.
| | - David Stillström
- Division of Surgery, Department of Clinical Sciences, Karolinska Institutet at Danderyd Hospital, Stockholm, Sweden
| | - Fredrik Holmquist
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Anders Nilsson
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Jacob Freedman
- Division of Surgery, Department of Clinical Sciences, Karolinska Institutet at Danderyd Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad EB, Shamloo AS, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O'Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 2024; 21:e31-e149. [PMID: 38597857 DOI: 10.1016/j.hrthm.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society, the Asia Pacific Heart Rhythm Society, and the Latin American Heart Rhythm Society.
Collapse
Affiliation(s)
- Stylianos Tzeis
- Department of Cardiology, Mitera Hospital, 6, Erythrou Stavrou Str., Marousi, Athens, PC 151 23, Greece.
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo B Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil; Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France; Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, and Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | | | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain; Hospital Viamed Santa Elena, Madrid, Spain
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, USA; Case Western Reserve University, Cleveland, OH, USA; Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA; Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología 'Ignacio Chávez', Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O'Neill
- Cardiovascular Directorate, St. Thomas' Hospital and King's College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
4
|
Sugrue A, Shabtaie S, Tan NY, Maor E, Kapa S, Asirvatham SJ. Considerations regarding safety with pulsed field ablation for atrial fibrillation. Heart Rhythm O2 2024; 5:655-661. [PMID: 39493907 PMCID: PMC11524966 DOI: 10.1016/j.hroo.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
The introduction of pulsed field ablation (PFA) in electrophysiology marks a significant advancement, promising efficacy comparable to thermal ablation methods while potentially providing safety advantages. Despite a generally favorable safety profile in human trials and postmarket registries, cautious evaluation of PFA's safety is essential. This review provides a comprehensive overview of key safety considerations as we discuss a myriad of considerations ranging from thermal effects, gaseous microbubble formation, muscle contractions, and proarrhythmia to procedural techniques. We explore specific safety concerns with phrenic nerve injury, cerebral lesions, coronary artery spasm, hemolysis and pulmonary bleeding. Vigilance in safety monitoring, coupled with advancements in procedural techniques and understanding of PFA's unique effects, is crucial for optimizing the safe and effective use of PFA.
Collapse
Affiliation(s)
- Alan Sugrue
- Division of Heart Rhythm, Department of Cardiovascular Diseases, Mayo Clinic Rochester, Rochester, Minnesota
| | - Samuel Shabtaie
- Division of Heart Rhythm, Department of Cardiovascular Diseases, Mayo Clinic Rochester, Rochester, Minnesota
| | - Nicholas Y. Tan
- Division of Heart Rhythm, Department of Cardiovascular Diseases, Mayo Clinic Rochester, Rochester, Minnesota
| | - Elad Maor
- Chaim Sheba Medical Center School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Suraj Kapa
- Division of Heart Rhythm, Department of Cardiovascular Diseases, Mayo Clinic Rochester, Rochester, Minnesota
| | - Samuel J. Asirvatham
- Division of Heart Rhythm, Department of Cardiovascular Diseases, Mayo Clinic Rochester, Rochester, Minnesota
| |
Collapse
|
5
|
Kaviani R, Neal RE, Hunter DW, Krimsky WS. Tissue Radiologic and Pathologic Response to Biphasic Pulsed Electric Field Technology in a Porcine Model. J Vasc Interv Radiol 2024:S1051-0443(24)00548-7. [PMID: 39197699 DOI: 10.1016/j.jvir.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
PURPOSE To evaluate the radiologic, pathologic, and safety characteristics of a commercially available pulsed electric field (PEF) ablation system in a porcine model. MATERIALS AND METHODS Monopolar biphasic PEF ablation was delivered to the liver, kidney, and longissimus dorsi muscle through a single needle via a percutaneous or open approach with the Aliya System (Galvanize Therapeutics, Redwood City, California). Six animals were ablated and evaluated in 2 cohorts (Day 3 and Day 28). Muscle, kidney, and liver were ablated in each animal. Intraprocedural cone-beam computed tomography (CT), follow-up weekly CT, blood serology, gross pathology, and histopathology were performed to characterize the radiographic evolution and tissue response. RESULTS There were no adverse events and no findings of electrocardiographic abnormalities, and serologic values returned to baseline by Day 28. Ablation zones were visible on unenhanced CT images during follow-up. Most identified zones became radiographically smaller over time, with some fully resolved by Day 28. The relative decrease in gross ablation zone diameter in the liver and skeletal muscle was 20% and 26%, respectively, whereas kidney sites grew in diameter by 22%. Ablation sites were focal and contained within the intended target tissue without extension to nontarget tissues or collateral structures. CONCLUSIONS The biphasic PEF system evaluated here resulted in a safe and predictable ablation response, with preservation of structural tissues in an animal model, offering an alternative to thermal ablative modalities, particularly near critical structures.
Collapse
Affiliation(s)
- Rosa Kaviani
- Galvanize Therapeutics, Inc., Redwood City, California
| | - Robert E Neal
- Galvanize Therapeutics, Inc., Redwood City, California
| | | | | |
Collapse
|
6
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad E, Shamloo AS, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O'Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. J Interv Card Electrophysiol 2024; 67:921-1072. [PMID: 38609733 DOI: 10.1007/s10840-024-01771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society (HRS), the Asia Pacific HRS, and the Latin American HRS.
Collapse
Affiliation(s)
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil
- Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
- Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Nikolaos Dagres
- Department of Cardiac Electrophysiology, Charité University Berlin, Berlin, Germany
| | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Cardiology, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - Gerhard Hindricks
- Department of Cardiac Electrophysiology, Charité University Berlin, Berlin, Germany
| | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain
- Hospital Viamed Santa Elena, Madrid, Spain
| | - Gregory F Michaud
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, USA
- Case Western Reserve University, Cleveland, OH, USA
- Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA
- Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología 'Ignacio Chávez', Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O'Neill
- Cardiovascular Directorate, St. Thomas' Hospital and King's College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
7
|
Lv Y, Feng Z, Liu X, Zhang J, Yao C. The Enhancement of Tumor Ablation Effect by the Combination of High-Frequency and Low-Voltage Bipolar Electroporation Pulses. IEEE Trans Biomed Eng 2024; 71:1577-1586. [PMID: 38113160 DOI: 10.1109/tbme.2023.3344153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The H-FIRE (high-frequency irreversible electroporation) protocol employs high-frequency bipolar pulses (HFBPs) with a width of ∼1 µs for tumor ablation with slight muscle contraction. However, H-FIRE pulses need a higher electric field to generate a sufficient ablation effect, which may cause undesirable thermal damage. OBJECTIVE Recently, combining short high-voltage IRE monopolar pulses with long low-voltage IRE monopolar pulses was shown to enlarge the ablation region. This finding indicates that combining HFBPs with low-voltage bipolar pulses (LVBPs), which are called composited bipolar pulses (CBPs), may enhance the ablation effect. METHODS This study designed a pulse generator by modifying a full-bridge inverter. The cell suspension and 3D tumor mimic experiments (U251 cells) were performed to examine the enhancement of the ablation effect. RESULTS The generator outputs HFBPs with 0-±2.5 kV and LVBPs with 0-±0.3 kV in one period. The pulse parameters are adjustable by programming on a human-computer interface. The cell suspension experiments showed that CBPs could enhance cytotoxicity, as compared to HFBPs with no cell-killing effect. Even at lower electric energy, the cell viability by CBPs was significantly lower than that of the HFBPs protocol. The ablation experiments on the 3D tumor mimic showed that the CBPs could create a larger connected ablation area. In contrast, the HFBPs protocol with a similar dose generated a nonconnected ablation area. CONCLUSION Results indicate that the CBPs protocol can enhance the ablation effect of HFBPs protocol. SIGNIFICANCE This proposed generator that uses the CBPs principle may be a useful tool for tumor ablation.
Collapse
|
8
|
Fesmire CC, Williamson RH, Petrella RA, Kaufman JD, Topasna N, Sano MB. Integrated Time Nanosecond Pulse Irreversible Electroporation (INSPIRE): Assessment of Dose, Temperature, and Voltage on Experimental and Clinical Treatment Outcomes. IEEE Trans Biomed Eng 2024; 71:1511-1520. [PMID: 38145519 PMCID: PMC11035095 DOI: 10.1109/tbme.2023.3340718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
OBJECTIVE This study sought to investigate a novel strategy using temperature-controlled delivery of nanosecond pulsed electric fields as an alternative to the 50-100 microsecond pulses used for irreversible electroporation. METHODS INSPIRE treatments were carried out at two temperatures in 3D tumor models using doses between 0.001 s and 0.1 s. The resulting treatment zones were quantified using viability staining and lethal electric field intensities were determined numerically. Computational modeling was then used to determine parameters necessary for INSPIRE treatments to achieve equivalent treatment zones to clinical electroporation treatments and evaluate the potential for these treatments to induce deleterious thermal damage. RESULTS Lethal thresholds between 1109 and 709 V/cm were found for nominal 0.01 s treatments with pulses between 350 ns and 2000 ns at physiological temperatures. Further increases in dose resulted in significant decreases in lethal thresholds. Given these experimental results, treatment zones comparable to clinical electroporation are possible by increasing the dose and voltage used with nanosecond duration pulses. Temperature-controlled simulations indicate minimal thermal cell death while achieving equivalent treatment volumes to clinical electroporation. CONCLUSION Nanosecond electrical pulses can achieve comparable outcomes to traditional electroporation provided sufficient electrical doses or voltages are applied. The use of temperature-controlled delivery may minimize thermal damage during treatment. SIGNIFICANCE Intense muscle stimulation and the need for cardiac gating have limited irreversible electroporation. Nanosecond pulses can alleviate these challenges, but traditionally have produced significantly smaller treatment zones. This study suggests that larger ablation volumes may be possible with the INSPIRE approach and that future in vivo studies are warranted.
Collapse
|
9
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad EB, Sepehri Shamloo A, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O’Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace 2024; 26:euae043. [PMID: 38587017 PMCID: PMC11000153 DOI: 10.1093/europace/euae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 04/09/2024] Open
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society, the Asia Pacific Heart Rhythm Society, and the Latin American Heart Rhythm Society .
Collapse
Affiliation(s)
- Stylianos Tzeis
- Department of Cardiology, Mitera Hospital, 6, Erythrou Stavrou Str., Marousi, Athens, PC 151 23, Greece
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo B Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil
- Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
- Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, and Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | | | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain
- Hospital Viamed Santa Elena, Madrid, Spain
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David’s Medical Center, Austin, TX, USA
- Case Western Reserve University, Cleveland, OH, USA
- Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA
- Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología ‘Ignacio Chávez’, Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O’Neill
- Cardiovascular Directorate, St. Thomas’ Hospital and King’s College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
10
|
Rajagopalan NR, Munawar T, Sheehan MC, Fujimori M, Vista WR, Wimmer T, Gutta NB, Solomon SB, Srimathveeravalli G. Electrolysis products, reactive oxygen species and ATP loss contribute to cell death following irreversible electroporation with microsecond-long pulsed electric fields. Bioelectrochemistry 2024; 155:108579. [PMID: 37769509 PMCID: PMC10841515 DOI: 10.1016/j.bioelechem.2023.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Membrane permeabilization and thermal injury are the major cause of cell death during irreversible electroporation (IRE) performed using high electric field strength (EFS) and small number of pulses. In this study, we explored cell death under conditions of reduced EFS and prolonged pulse application, identifying the contributions of electrolysis, reactive oxygen species (ROS) and ATP loss. We performed ablations with conventional high-voltage low pulse (HV-LP) and low-voltage high pulse (LV-HP) conditions in a 3D tumor mimic, finding equivalent ablation volumes when using 2000 V/cm 90 pulses or 1000 V/cm 900 pulses respectively. These results were confirmed by performing ablations in swine liver. In LV-HP treatment, ablation volume was found to increase proportionally with pulse numbers, without the substantial temperature increase seen with HV-LP parameters. Peri-electrode pH changes, ATP loss and ROS production were seen in both conditions, but LV-HP treatments were more sensitive to blocking of these forms of cell injury. Increases in current drawn during HV-LP was not observed during LV-HP condition where the total ablation volume correlated to the charge delivered into the tissue which was greater than HV-LP treatment. LV-HP treatment provides a new paradigm in using pulsed electric fields for tissue ablation with clinically relevant volumes.
Collapse
Affiliation(s)
| | - Tarek Munawar
- Department of Radiology, Interventional Radiology Service, Memorial Sloan-Kettering Cancer Center, NY, USA
| | - Mary Chase Sheehan
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - William-Ray Vista
- Department of Radiology, Interventional Radiology Service, Memorial Sloan-Kettering Cancer Center, NY, USA
| | - Thomas Wimmer
- Dept. of Radiology, Division of General Radiology, Medical University of Graz, Austria
| | | | - Stephen B Solomon
- Department of Radiology, Interventional Radiology Service, Memorial Sloan-Kettering Cancer Center, NY, USA
| | - Govindarajan Srimathveeravalli
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, USA; Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
11
|
Jouni A, Baragona M, Pedersoli F, Ritter A. Temperature Distribution on Classical Two Needles IRE Setup Versus a Single Needle Prototype. Technol Cancer Res Treat 2024; 23:15330338241288342. [PMID: 39440388 PMCID: PMC11500228 DOI: 10.1177/15330338241288342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVES Irreversible Electroporation (IRE) is a non-thermal minimally invasive cancer therapy used in the treatment of liver tumors. However, the therapy entails an electrical current flux which can be high enough to cause a noticeable temperature increase. Therefore, the analysis of the heat distribution is important: during any IRE treatment, the target area is intended to be treated with non-thermal effects, where existing thermal effects should not damage nearby sensitive structures. This article aims to compare the established two parallel needles electrode setup, used by FDA-approved electroporation delivering devices, to a single needle, multiple electrode prototype design. METHODS Levels and distributions of the temperature at different distances from the applicators during an IRE liver treatment were investigated. The prototype results were collated with already published in-vivo data. All electrode configurations were analyzed numerically in COMSOL Multiphysics for different pulse protocols. RESULTS The extension of coagulation necrosis predicted by the model matched available in-vivo data. While the maximum average temperature during pulsation was higher for the prototype (74 °C) than for the two-needle IRE setup (57 °C), the thickness of the coagulation necrosis around the conductive electrodes was in the same range for both configurations. However, the location differed completely: the necrosis engendered by the prototype was located inside the tumor, while the two-needle IRE setup created necrosis outside the tumor, potentially closer to sensitive structures. CONCLUSION The results highlighted the importance of heat distribution analysis for the design of new IRE needles as well as for IRE treatment planning. Proper analysis ensures that the non-thermal effects are maximized while minimizing any potential thermal damage to surrounding sensitive structures.
Collapse
Affiliation(s)
- Ali Jouni
- University Hospital RWTH Aachen, Clinic for Diagnostic and Interventional Radiology, Aachen, Germany
| | | | - Federico Pedersoli
- Imaging Institute of Italian Switzerland, Bellinzona Regional Hospital, San Giovanni, Switzerland
| | - Andreas Ritter
- University Hospital RWTH Aachen, Clinic for Diagnostic and Interventional Radiology, Aachen, Germany
| |
Collapse
|
12
|
Stupan U, Čemažar M, Trotovšek B, Petrič M, Tomažič A, Gašljević G, Ranković B, Seliškar A, Plavec T, Sredenšek J, Plut J, Štukelj M, Lampreht Tratar U, Jesenko T, Nemec Svete A, Serša G, Đokić M. Histologic changes of porcine portal vein anastomosis after electrochemotherapy with bleomycin. Bioelectrochemistry 2023; 154:108509. [PMID: 37459749 DOI: 10.1016/j.bioelechem.2023.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/19/2023] [Accepted: 07/09/2023] [Indexed: 09/16/2023]
Abstract
Electrochemotherapy (ECT1) is used for treatment of unresectable abdominal malignancies. This study aims to show that ECT of porcine portal vein anastomosis is safe and feasible in order to extend the indications for margin attenuation after resection of locally advanced pancreatic carcinoma. No marked differences were found between the control group and ECT treated groups. Electroporation thus caused irreversible damage to the vascular smooth muscle cells in tunica media that could bedue to the narrow irreversible electroporation zone that may occur near the electrodes, or due to vasa vasorum thrombosis in the tunica externa. Based on the absence of vascular complications, and similar histological changes in lienal veinanastomosis, we can conclude that ECT of portal vein anastomosis is safe and feasible.
Collapse
Affiliation(s)
- Urban Stupan
- University of Ljubljana, Faculty of Medicine, Korytkova ulica 2, SI-1000 Ljubljana, Slovenia.
| | - Maja Čemažar
- Institute of Oncology Ljubljana, Zaloška cesta 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Veterinary Faculty, Gerbičeva ulica 60, SI-1000 Ljubljana, Slovenia
| | - Blaž Trotovšek
- University of Ljubljana, Faculty of Medicine, Korytkova ulica 2, SI-1000 Ljubljana, Slovenia; University Medical Centre Ljubljana, Zaloška cesta 2, SI-1000 Ljubljana, Slovenia
| | - Miha Petrič
- University of Ljubljana, Faculty of Medicine, Korytkova ulica 2, SI-1000 Ljubljana, Slovenia; University Medical Centre Ljubljana, Zaloška cesta 2, SI-1000 Ljubljana, Slovenia
| | - Aleš Tomažič
- University of Ljubljana, Faculty of Medicine, Korytkova ulica 2, SI-1000 Ljubljana, Slovenia; University Medical Centre Ljubljana, Zaloška cesta 2, SI-1000 Ljubljana, Slovenia
| | - Gorana Gašljević
- Institute of Oncology Ljubljana, Zaloška cesta 2, SI-1000 Ljubljana, Slovenia
| | - Branislava Ranković
- University of Ljubljana, Faculty of Medicine, Korytkova ulica 2, SI-1000 Ljubljana, Slovenia
| | - Alenka Seliškar
- University of Primorska, Faculty of Health Sciences, Polje 42, SI-6310 Izola, Slovenia
| | - Tanja Plavec
- University of Primorska, Faculty of Health Sciences, Polje 42, SI-6310 Izola, Slovenia
| | - Jerneja Sredenšek
- University of Primorska, Faculty of Health Sciences, Polje 42, SI-6310 Izola, Slovenia
| | - Jan Plut
- University of Primorska, Faculty of Health Sciences, Polje 42, SI-6310 Izola, Slovenia
| | - Marina Štukelj
- University of Primorska, Faculty of Health Sciences, Polje 42, SI-6310 Izola, Slovenia
| | | | - Tanja Jesenko
- Institute of Oncology Ljubljana, Zaloška cesta 2, SI-1000 Ljubljana, Slovenia
| | - Alenka Nemec Svete
- University of Primorska, Faculty of Health Sciences, Polje 42, SI-6310 Izola, Slovenia
| | - Gregor Serša
- Institute of Oncology Ljubljana, Zaloška cesta 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - Mihajlo Đokić
- University of Ljubljana, Faculty of Medicine, Korytkova ulica 2, SI-1000 Ljubljana, Slovenia; University Medical Centre Ljubljana, Zaloška cesta 2, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Timmer FEF, Geboers B, Scheffer HJ, Bakker J, Ruarus AH, Dijkstra M, van der Lei S, Boon R, Nieuwenhuizen S, van den Bemd BAT, Schouten EAC, van den Tol PM, Puijk RS, de Vries JJJ, de Gruijl TD, Meijerink MR. Tissue Resistance Decrease during Irreversible Electroporation of Pancreatic Cancer as a Biomarker for the Adaptive Immune Response and Survival. J Vasc Interv Radiol 2023; 34:1777-1784.e4. [PMID: 37391072 DOI: 10.1016/j.jvir.2023.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
PURPOSE To correlate irreversible electroporation (IRE) procedural resistance changes with survival outcomes and the IRE-induced systemic immune response in patients with locally advanced pancreatic cancer (LAPC). MATERIALS AND METHODS Data on IRE procedural tissue resistance (R) features and survival outcomes were collected from patients with LAPC treated within the context of 2 prospective clinical trials in a single tertiary center. Preprocedural and postprocedural peripheral blood samples were prospectively collected for immune monitoring. The change (ie, decrease) in R during the first 10 test pulses (ΔR10p) and during the total procedure (ΔRtotal) were calculated. Patients were divided in 2 groups on the basis of the median change in R (large ΔR vs small ΔR) and compared for differences in overall survival (OS) and progression-free survival and immune cell subsets. RESULTS A total of 54 patients were included; of these, 20 underwent immune monitoring. Linear regression modeling showed that the first 10 test pulses reflected the change in tissue resistance during the total procedure appropriately (P < .001; R2 = 0.91). A large change in tissue resistance significantly correlated with a better OS (P = .026) and longer time to disease progression (P = .045). Furthermore, a large change in tissue resistance was associated with CD8+ T cell activation through significant upregulation of Ki-67+ (P = .02) and PD-1+ (P = .047). Additionally, this subgroup demonstrated significantly increased expression of CD80 on conventional dendritic cells (cDC1; P = .027) and PD-L1 on immunosuppressive myeloid-derived suppressor cells (P = .039). CONCLUSIONS IRE procedural resistance changes may serve as a biomarker for survival and IRE-induced systemic CD8+ T cell and cDC1 activation.
Collapse
Affiliation(s)
- Florentine E F Timmer
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Bart Geboers
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands.
| | - Hester J Scheffer
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Joyce Bakker
- Department of Medical Oncology, Amsterdam UMC, location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Alette H Ruarus
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Madelon Dijkstra
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Susan van der Lei
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Rianne Boon
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Sanne Nieuwenhuizen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Bente A T van den Bemd
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Evelien A C Schouten
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | | | - Robbert S Puijk
- Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Onze Lieve Vrouwen Gasthuis, Amsterdam, the Netherlands
| | - Jan J J de Vries
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam UMC, location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Martijn R Meijerink
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Sheehan MC, Collins S, Wimmer T, Gutta NB, Monette S, Durack JC, Solomon SB, Srimathveeravalli G. Non-Contact Irreversible Electroporation in the Esophagus With a Wet Electrode Approach. J Biomech Eng 2023; 145:091004. [PMID: 37144889 PMCID: PMC10259469 DOI: 10.1115/1.4062491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
Our objective was to develop a technique for performing irreversible electroporation (IRE) of esophageal tumors while mitigating thermal damage to the healthy lumen wall. We investigated noncontact IRE using a wet electrode approach for tumor ablation in a human esophagus with finite element models for electric field distribution, joule heating, thermal flux, and metabolic heat generation. Simulation results indicated the feasibility of tumor ablation in the esophagus using an catheter mounted electrode immersed in diluted saline. The ablation size was clinically relevant, with substantially lesser thermal damage to the healthy esophageal wall when compared to IRE performed by placing a monopolar electrode directly into the tumor. Additional simulations were used to estimate ablation size and penetration during noncontact wet-electrode IRE (wIRE) in the healthy swine esophagus. A novel catheter electrode was manufactured and wIRE evaluated in seven pigs. wIRE was performed by securing the device in the esophagus and using diluted saline to isolate the electrode from the esophageal wall while providing electric contact. Computed tomography and fluoroscopy were performed post-treatment to document acute lumen patency. Animals were sacrificed within four hours following treatment for histologic analysis of the treated esophagus. The procedure was safely completed in all animals; post-treatment imaging revealed intact esophageal lumen. The ablations were visually distinct on gross pathology, demonstrating full thickness, circumferential regions of cell death (3.52 ± 0.89 mm depth). Acute histologic changes were not evident in nerves or extracellular matrix architecture within the treatment site. Catheter directed noncontact IRE is feasible for performing penetrative ablations in the esophagus while avoiding thermal damage.
Collapse
Affiliation(s)
- Mary Chase Sheehan
- Department of Mechanical Engineering, Amherst Life Sciences Laboratories, University of Massachusetts, 240 Thatcher Road, Amherst, MA 01003
| | - Scott Collins
- Department of Biomedical Engineering, Amherst Life Sciences Laboratories, University of Massachusetts, 240 Thatcher Road, Amherst, MA 01003
| | - Thomas Wimmer
- Department of Radiology, Division of General Radiology, Medical University of Graz, Auenbruggerplatz 9, Graz 8036, Austria
| | | | - Sebastian Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, The Rockefeller University, New York, NY 10065
| | | | - Stephen B. Solomon
- Department of Radiology, Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Govindarajan Srimathveeravalli
- Department of Mechanical Engineering Institute for Applied Life Sciences, Amherst Life Sciences Laboratories, University of Massachusetts, 240 Thatcher Road, Amherst, MA 01003
| |
Collapse
|
15
|
Hogenes AM, Slump CH, te Riet o. g. Scholten GA, Stommel MWJ, Fütterer JJ, Verdaasdonk RM. The Effect of Partial Electrical Insulation of the Tip and Active Needle Length of Monopolar Irreversible Electroporation Electrodes on the Electric Field Line Pattern and Temperature Gradient to Improve Treatment Control. Cancers (Basel) 2023; 15:4280. [PMID: 37686556 PMCID: PMC10486353 DOI: 10.3390/cancers15174280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Unintentional local temperature effects can occur during irreversible electroporation (IRE) treatment, especially near the electrodes, and most frequently near the tip. Partial electrical insulation of the IRE electrodes could possibly control these temperature effects. This study investigated and visualized the effect of partial electrical insulation applied to the IRE electrodes on the electric field line pattern and temperature gradient. Six designs of (partial) electrical insulation of the electrode tip and/or active needle length (ANL) of the original monopolar 19G IRE electrodes were investigated. A semolina in castor oil model was used to visualize the electric field line pattern in a high-voltage static electric field. An optical method to visualize a change in temperature gradient (color Schlieren) was used to image the temperature development in a polyacrylamide gel. Computational models were used to support the experimental findings. Around the electrode tip, the highest electric field line density and temperature gradient were present. The more insulation was applied to the electrodes, the higher the resistance. Tip and ANL insulation together reduced the active area of and around the electrodes, resulting in a visually enlarged area that showed a change in temperature gradient. Electrically insulating the electrode tip together with an adjustment in IRE parameter settings could potentially reduce the uncontrollable influence of the tip and may improve the predictability of the current pathway development.
Collapse
Affiliation(s)
- Annemiek M. Hogenes
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101 (766), 6500 HB Nijmegen, The Netherlands
| | - Cornelis H. Slump
- Department of Robotics and Mechatronics, University of Twente, 7522 NB Enschede, The Netherlands
| | | | - Martijn W. J. Stommel
- Department of Surgery, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jurgen J. Fütterer
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101 (766), 6500 HB Nijmegen, The Netherlands
- Department of Robotics and Mechatronics, University of Twente, 7522 NB Enschede, The Netherlands
| | - Rudolf M. Verdaasdonk
- Department of Health Technology Implementation, TechMed Center, University of Twente, 7522 NB Enschede, The Netherlands
| |
Collapse
|
16
|
Jeon HJ, Choi HS, Lee JM, Kim ES, Keum B, Jeen YT, Lee HS, Chun HJ, Jeong S, Kim HB, Kim JH. Assessment of efficacy and safety of advanced endoscopic irreversible electroporation catheter in the esophagus. Sci Rep 2023; 13:7917. [PMID: 37193702 PMCID: PMC10188560 DOI: 10.1038/s41598-023-33635-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/16/2023] [Indexed: 05/18/2023] Open
Abstract
Nonthermal irreversible electroporation (NTIRE) is emerging as a promising tissue ablation technique. However, maintaining irreversible electroporation (IRE) electrodes against displacement during strong esophageal spasms remains an obstacle. The present study aimed to evaluate the efficacy and safety of newly designed balloon-type endoscopic IRE catheters. Six pigs were randomly allocated to each catheter group, and each pig was subjected to four ablations at alternating voltages of 1500 V and 2000 V. Esophagogastroscopy was performed during the IRE. The ability of balloon-type catheters to execute complete IRE with 40 pulses was assessed. The success rate was higher for the balloon-type catheter than that for the basket-type (12/12 [100%] vs. 2/12 [16.7%], p < 0.001). Following gross inspection and histologic analysis of the 1500-V vs. 2000-V balloon-type catheter revealed a larger mucosal damage area (105.3 mm2 vs. 140.8 mm2, p = 0.004) and greater damage depth (476 μm vs. 900 μm, p = 0.02). Histopathology of the ablated tissue revealed separated epithelium, inflamed lamina propria, congested muscularis mucosa, necrotized submucosa, and disorganized muscularis propria. Balloon-type catheters demonstrated efficacy, achieving full electrical pulse sequences under NTIRE conditions, and a safe histological profile below 2000 V (1274 V/cm). Optimal electrical conditions and electrode arrays pose ongoing challenges.
Collapse
Affiliation(s)
- Han Jo Jeon
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hyuk Soon Choi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Jae Min Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Eun Sun Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Bora Keum
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yoon Tae Jeen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hong Sik Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hoon Jai Chun
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seung Jeong
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hong Bae Kim
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jong Hyuk Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
17
|
Hogenes AM, Overduin CG, Slump CH, van Laarhoven CJHM, Fütterer JJ, ten Broek RPG, Stommel MWJ. The Influence of Irreversible Electroporation Parameters on the Size of the Ablation Zone and Thermal Effects: A Systematic Review. Technol Cancer Res Treat 2023; 22:15330338221125003. [PMID: 36598035 PMCID: PMC9830580 DOI: 10.1177/15330338221125003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/16/2022] [Accepted: 08/08/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction: The aim of this study was to review the effect of irreversible electroporation parameter settings on the size of the ablation zone and the occurrence of thermal effects. This insight would help to optimize treatment protocols and effectively ablate a tumor while controlling the occurrence of thermal effects. Methods: Various individual studies report the influence of variation in electroporation parameters on the ablation zone size or occurrence of thermal effects. However, no connections have yet been established between these studies. With the aim of closing the gap in the understanding of and personalizing irreversible electroporation parameter settings, a systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A quality assessment was performed using an in-house developed grading tool based on components of commonly used grading domains. Data on the electroporation parameters voltage, number of electrodes, inter-electrode distance, active needle length, pulse length/number/protocol/frequency, and pulse interval were extracted. Ablation zone size and temperature data were grouped per parameter. Spearman correlation and linear regression were used to define the correlation with outcome measures. Results: A total of 7661 articles were screened, of which 18 preclinical studies (animal and phantom studies) met the inclusion criteria. These studies were graded as moderate (4/18) and low (14/18) quality. Only the applied voltage appeared to be a significant linear predictor of ablation zone size: length, surface, and volume. The pulse number was moderately but nonlinearly correlated with the ablation zone length. Thermal effects were more likely to occur for higher voltages (≥2000 V), higher number of electrodes, and increased active needle length. Conclusion: Firm conclusions are limited since studies that investigated and precisely reported the influence of electroporation parameters on the ablation zone size and thermal effects were scarce and mostly graded low quality. High-quality studies are needed to improve the predictability of the combined effect of variation in parameter combinations and optimize irreversible electroporation treatment protocols.
Collapse
Affiliation(s)
- Annemiek M Hogenes
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christiaan G Overduin
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cornelis H Slump
- Department of Robotics and Mechatronics, University of Twente, Enschede, the Netherlands
| | | | - Jurgen J Fütterer
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Robotics and Mechatronics, University of Twente, Enschede, the Netherlands
| | | | - Martijn W J Stommel
- Department of Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
18
|
Di Gregorio E, Israel S, Staelens M, Tankel G, Shankar K, Tuszyński JA. The distinguishing electrical properties of cancer cells. Phys Life Rev 2022; 43:139-188. [PMID: 36265200 DOI: 10.1016/j.plrev.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
In recent decades, medical research has been primarily focused on the inherited aspect of cancers, despite the reality that only 5-10% of tumours discovered are derived from genetic causes. Cancer is a broad term, and therefore it is inaccurate to address it as a purely genetic disease. Understanding cancer cells' behaviour is the first step in countering them. Behind the scenes, there is a complicated network of environmental factors, DNA errors, metabolic shifts, and electrostatic alterations that build over time and lead to the illness's development. This latter aspect has been analyzed in previous studies, but how the different electrical changes integrate and affect each other is rarely examined. Every cell in the human body possesses electrical properties that are essential for proper behaviour both within and outside of the cell itself. It is not yet clear whether these changes correlate with cell mutation in cancer cells, or only with their subsequent development. Either way, these aspects merit further investigation, especially with regards to their causes and consequences. Trying to block changes at various levels of occurrence or assisting in their prevention could be the key to stopping cells from becoming cancerous. Therefore, a comprehensive understanding of the current knowledge regarding the electrical landscape of cells is much needed. We review four essential electrical characteristics of cells, providing a deep understanding of the electrostatic changes in cancer cells compared to their normal counterparts. In particular, we provide an overview of intracellular and extracellular pH modifications, differences in ionic concentrations in the cytoplasm, transmembrane potential variations, and changes within mitochondria. New therapies targeting or exploiting the electrical properties of cells are developed and tested every year, such as pH-dependent carriers and tumour-treating fields. A brief section regarding the state-of-the-art of these therapies can be found at the end of this review. Finally, we highlight how these alterations integrate and potentially yield indications of cells' malignancy or metastatic index.
Collapse
Affiliation(s)
- Elisabetta Di Gregorio
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Simone Israel
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Michael Staelens
- Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada
| | - Gabriella Tankel
- Department of Mathematics & Statistics, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada
| | - Karthik Shankar
- Department of Electrical & Computer Engineering, University of Alberta, 9211 116 Street NW, Edmonton, T6G 1H9, AB, Canada
| | - Jack A Tuszyński
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada; Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada.
| |
Collapse
|
19
|
Real-Time Temperature Rise Estimation during Irreversible Electroporation Treatment through State-Space Modeling. Bioengineering (Basel) 2022; 9:bioengineering9100499. [PMID: 36290467 PMCID: PMC9598795 DOI: 10.3390/bioengineering9100499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
To evaluate the feasibility of real-time temperature monitoring during an electroporation-based therapy procedure, a data-driven state-space model was developed. Agar phantoms mimicking low conductivity (LC) and high conductivity (HC) tissues were tested under the influences of high (HV) and low (LV) applied voltages. Real-time changes in impedance, measured by Fourier Analysis SpecTroscopy (FAST) along with the known tissue conductivity and applied voltages, were used to train the model. A theoretical finite element model was used for external validation of the model, producing model fits of 95.8, 88.4, 90.7, and 93.7% at 4 mm and 93.2, 58.9, 90.0, and 90.1% at 10 mm for the HV-HC, LV-LC, HV-LC, and LV-HC groups, respectively. The proposed model suggests that real-time temperature monitoring may be achieved with good accuracy through the use of real-time impedance monitoring.
Collapse
|
20
|
Han X, Zhang N, Zhang Y, Li Z, Wang Y, Mao L, He T, Li Q, Zhao J, Chen X, Li Y, Qin Z, Lv Y, Ren F. Survival model database of human digestive system cells exposed to electroporation pulses: An in vitro and in silico study. Front Public Health 2022; 10:948562. [PMID: 36133930 PMCID: PMC9484541 DOI: 10.3389/fpubh.2022.948562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/04/2022] [Indexed: 01/21/2023] Open
Abstract
Background and objectives This study aimed to establish a mathematical survival model database containing cell-specific coefficients from human digestive system cells exposed to electroporation pulses (EPs). Materials and methods A total of 20 types of human digestive system cell lines were selected to investigate the effect of EPs on cell viability. Cell viability was measured after exposure to various pulse settings, and a cell survival model was established using the Peleg-Fermi model. Next, the cell-specific coefficients of each cell line were determined. Results Cell viability tended to decrease when exposed to stronger electric field strength (EFS), longer pulse duration, and more pulse number, but the decreasing tendency varied among different cell lines. When exposed to a lower EFS (<1,000 V/cm), only a slight decrease in cell viability occurred. All cell lines showed a similar tendency: the extent of electrical injury (EI) increased with the increase in pulse number and duration. However, there existed differences in heat sensitivity among organs. Conclusions This database can be used for the application of electroporation-based treatment (EBT) in the digestive system to predict cell survival and tissue injury distribution during the treatment.
Collapse
Affiliation(s)
- Xuan Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nana Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuchi Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhuoqun Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingxue Wang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lujing Mao
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tianshuai He
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qingshan Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiawen Zhao
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xue Chen
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yixuan Li
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zitong Qin
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fenggang Ren
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
21
|
Belfiore MP, De Chiara M, Reginelli A, Clemente A, Urraro F, Grassi R, Belfiore G, Cappabianca S. An overview of the irreversible electroporation for the treatment of liver metastases: When to use it. Front Oncol 2022; 12:943176. [PMID: 36119531 PMCID: PMC9477084 DOI: 10.3389/fonc.2022.943176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Tumour ablation is an established therapy for local treatment of liver metastases and hepatocellular carcinoma. Most commonly two different kind of thermic ablation, radiofrequency ablation and microwave ablation, are used in clinical practice. The aim of both is to induce thermic damage to the malignant cells in order to obtain coagulative necrosis of the neoplastic lesions. Our main concerns about these procedures are the collateral thermic damage to adjacent structures and heat-sink effect. Irreversible electroporation (IRE) is a recently developed, non-thermal ablation procedure which works applying short pulses of direct current that generate an electric field in the lesion area. The electric field increase the transmembrane potential, changing its permeability to ions.Irreversible electroporation does not generate heat, giving the chance to avoid the heat-sink effect and opening the path to a better treatment of all the lesions located in close proximity to big vessels and bile ducts. Electric fields produced by the IRE may affect endothelial cells and cholangiocytes but they spare the collagen matrix, preserving re-epithelization process as well as the function of the damaged structures. Purpose of the authors is to identify the different scenarios where CT-guided percutaneous IRE of the liver should be preferred to other ablative techniques and why.
Collapse
Affiliation(s)
- Maria Paola Belfiore
- Division of Radiology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Napoli, Italy
- *Correspondence: Maria Paola Belfiore,
| | - Marco De Chiara
- Division of Radiology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Alfonso Reginelli
- Division of Radiology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Alfredo Clemente
- Division of Radiology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Fabrizio Urraro
- Division of Radiology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Roberto Grassi
- Division of Radiology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Giuseppe Belfiore
- Department of Diagnostic Imaging, Nursing home L.Cobellis, Vallo della Lucania Salerno, Italy
| | - Salvatore Cappabianca
- Division of Radiology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Napoli, Italy
| |
Collapse
|
22
|
Qiu J, Lan L, Wang Y. Pulsed Electrical Field in Arrhythmia Treatment: Current Status and Future Directions. Pacing Clin Electrophysiol 2022; 45:1255-1262. [PMID: 36029174 DOI: 10.1111/pace.14586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022]
Abstract
Pulsed electrical field (PEF) ablation is a promising novel ablation modality for the treatment of arrhythmia, especially for atrial fibrillation(AF). It relies on electroporation inducing cellular permeabilization by the formation of pores in cell membranes, potentially resulting in cell death. Due to its' non-thermal nature and remarkable tissue selectivity, PEF ablation has be expected largely to replace conventional energy sources, such as radiofrequency (RF) and cryothermy. Up to now, the results in almost all clinical studies of PFA for AF ablation are optimistic, both in terms of effectiveness and safety. The possibility of clinical application of this technology to ventricular tachycardia(VT) has also been supported by several animal models. In this review, we aim to give an overview of the mechanism and technical progress of PFA in cardiac arrhythmia treatment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jie Qiu
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Lan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Zhao Y, McKillop IH, Davalos RV. Modeling of a single bipolar electrode with tines for irreversible electroporation delivery. Comput Biol Med 2022; 142:104870. [PMID: 35051854 PMCID: PMC10037907 DOI: 10.1016/j.compbiomed.2021.104870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/24/2021] [Accepted: 09/12/2021] [Indexed: 01/07/2023]
Abstract
Irreversible electroporation (IRE) is a non-thermal tumor ablation technology employed to treat solid tumors not amenable to resection or thermal ablation. The IRE systems currently in clinical use deliver electrical pulses via multiple monopolar electrodes. This approach can present significant technical challenges due to the requirement for accurate placement of multiple electrodes and maintenance of parallel electrode alignment during pulse delivery. In this study, we sought to evaluate a novel IRE electrode configuration consisting of a single bipolar electrode with deployable tines. Using commercial finite element software predicted ablation outcomes, thermal damage, ablation sphericity, and energy delivery were calculated for existing monopolar and bipolar electrodes, and bipolar electrodes with either 4 or 8 deployable tines. The bipolar electrodes with tines generated larger predicted ablations compared to existing monopolar (>100%) and bipolar (>10%) arrangements, and the ablation shape using bipolar electrodes with tines were more spherical than those modeled for bipolar electrodes. Thermal damage modeled for bipolar electrodes and bipolar electrodes with tines was less than that of monopolar electrodes (using identical pulse parameters), and bipolar electrodes with tines delivered less energy than monopolar or bipolar electrodes. These studies using a single point of device insertion suggest the potential for developing alternative IRE delivery techniques, and may simplify clinical use and increase the predicted ablation shape/volume.
Collapse
Affiliation(s)
- Yajun Zhao
- College of Electrical Engineering and Control Science, Nanjing Tech. University, Nanjing, 211816, China; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Iain H McKillop
- Department of Surgery, Atrium Health, 1000 Blythe Boulevard, Charlotte, NC, 28203, USA
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
24
|
Di Biase L, Diaz JC, Zhang XD, Romero J. Pulsed field catheter ablation in atrial fibrillation. Trends Cardiovasc Med 2021; 32:378-387. [PMID: 34329732 DOI: 10.1016/j.tcm.2021.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/06/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022]
Abstract
Catheter ablation (CA) has become the mainstay therapy for the maintenance of sinus rhythm in patients with atrial fibrillation (AF), with pulmonary vein isolation (PVI) the most frequently used treatment strategy. Although several energy sources have been tested (including radiofrequency, cryothermal and laser), these are not devoid of safety issues and in many instances effectiveness is dependent on operator experience. Pulsed field ablation (PFA) is a novel energy source by which high-voltage electric pulses are used to create pores in the cellular membrane (i.e., electroporation), leading to cellular death. The amount of energy required to produce irreversible electroporation is highly tissue dependent. In consequence, a tailored protocol in which specific targeting of the atrial myocardium is achieved while sparing adjacent tissues is theoretically feasible, increasing the safety of the procedure. While large scale clinical trials are lacking, current clinical evidence has demonstrated significant efficacy in achieving durable PVI without ablation related adverse events.
Collapse
Affiliation(s)
- Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210th Street, Bronx 10467, NY, United States.
| | - Juan Carlos Diaz
- Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210th Street, Bronx 10467, NY, United States
| | - Xiao-Dong Zhang
- Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210th Street, Bronx 10467, NY, United States
| | - Jorge Romero
- Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210th Street, Bronx 10467, NY, United States
| |
Collapse
|
25
|
Feasibility and effectiveness of endoscopic irreversible electroporation for the upper gastrointestinal tract: an experimental animal study. Sci Rep 2021; 11:15353. [PMID: 34321494 PMCID: PMC8319327 DOI: 10.1038/s41598-021-94583-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Irreversible electroporation (IRE) is a local non-thermal ablative technique currently used to treat solid tumors. Here, we investigated the clinical potency and safety of IRE with an endoscope in the upper gastrointestinal tract. Pigs were electroporated with recently designed endoscopic IRE catheters in the esophagus, stomach, and duodenum. Two successive strategies were introduced to optimize the electrical energy for the digestive tract. First, each organ was electroporated and the energy upscaled to confirm the upper limit energy inducing improper tissue results, including bleeding and perforation. Excluding the unacceptable energy from the first step, consecutive electroporations were performed with stepwise reductions in energy to identify the energy that damaged each layer. Inceptive research into inappropriate electrical intensity contributed to extensive hemorrhage and bowel perforation for each tissue above a certain energy threshold. However, experiments performed below the precluded energy accompanying hematoxylin and eosin staining and terminal deoxynucleotidyl transferase dUTP nick-end labeling assays showed that damaged mucosal area and depth significantly decreased with decreased energy. Relevant histopathology showed infiltration of inflammatory cells with pyknotic nuclei at the electroporated lesion. This investigation demonstrated the possibility of endoscopic IRE in mucosal dysplasia or early malignant tumors of the hollow viscus.
Collapse
|
26
|
Kok HP, Cressman ENK, Ceelen W, Brace CL, Ivkov R, Grüll H, Ter Haar G, Wust P, Crezee J. Heating technology for malignant tumors: a review. Int J Hyperthermia 2021; 37:711-741. [PMID: 32579419 DOI: 10.1080/02656736.2020.1779357] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The therapeutic application of heat is very effective in cancer treatment. Both hyperthermia, i.e., heating to 39-45 °C to induce sensitization to radiotherapy and chemotherapy, and thermal ablation, where temperatures beyond 50 °C destroy tumor cells directly are frequently applied in the clinic. Achievement of an effective treatment requires high quality heating equipment, precise thermal dosimetry, and adequate quality assurance. Several types of devices, antennas and heating or power delivery systems have been proposed and developed in recent decades. These vary considerably in technique, heating depth, ability to focus, and in the size of the heating focus. Clinically used heating techniques involve electromagnetic and ultrasonic heating, hyperthermic perfusion and conductive heating. Depending on clinical objectives and available technology, thermal therapies can be subdivided into three broad categories: local, locoregional, or whole body heating. Clinically used local heating techniques include interstitial hyperthermia and ablation, high intensity focused ultrasound (HIFU), scanned focused ultrasound (SFUS), electroporation, nanoparticle heating, intraluminal heating and superficial heating. Locoregional heating techniques include phased array systems, capacitive systems and isolated perfusion. Whole body techniques focus on prevention of heat loss supplemented with energy deposition in the body, e.g., by infrared radiation. This review presents an overview of clinical hyperthermia and ablation devices used for local, locoregional, and whole body therapy. Proven and experimental clinical applications of thermal ablation and hyperthermia are listed. Methods for temperature measurement and the role of treatment planning to control treatments are discussed briefly, as well as future perspectives for heating technology for the treatment of tumors.
Collapse
Affiliation(s)
- H Petra Kok
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik N K Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, Ghent, Belgium
| | - Christopher L Brace
- Department of Radiology and Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Holger Grüll
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Gail Ter Haar
- Department of Physics, The Institute of Cancer Research, London, UK
| | - Peter Wust
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Wardhana G, Almeida JP, Abayazid M, Fütterer JJ. Development of a thermal model for irreversible electroporation: an approach to estimate and optimize the IRE protocols. Int J Comput Assist Radiol Surg 2021; 16:1325-1334. [PMID: 34032965 PMCID: PMC8295143 DOI: 10.1007/s11548-021-02403-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/07/2021] [Indexed: 11/27/2022]
Abstract
Purpose Irreversible electroporation (IRE) is an emerging technique that has drawn attention in the field of cancer treatment. IRE uses non-thermal electric pulses to induce death of cancerous cells. However, recent studies have shown that the application of this technique may result in heating of the tissue. There is still room for improving its efficiency and defining better treatment protocols. This study investigates the optimal IRE protocols that avoiding the thermal damage during the IRE treatment. Methods Electrode and pulse parameter are investigated. Finite element models are created to evaluate the ablation area and the temperature changes in the tissue. The model is validated experimentally in bovine liver tissue, while the parameters were optimized using response surface method (RSM). Results From analysis of variance, the parameter of electrode distance and input voltage has significant effect to the temperature rise in the IRE treatment of bovine liver (P = 0.020 and P = 0.003 respectively). Meanwhile, only the input voltage significantly affects the ablation area (P < 0.001). The optimal result from RSM showed that for maximum ablation area 250.82mm2 with no thermal damage, the IRE protocol consisted of an active electrode length of 10 mm, a distance between electrodes of 10 mm, and the delivery of 50 pulses of 41.21 µs and 3000 V. Conclusions The approach presented in this study allows the optimization of the IRE protocols. An optimal IRE protocol that maximizes the ablation area was successfully calculated which can be applied with no risk of thermal damage to the tissue.
Collapse
Affiliation(s)
- Girindra Wardhana
- Department of Robotics and Mechatronics, The Faculty of Electrical Engineering, Mathematics and Computer Science, Technical Medical Centre, University of Twente, 7522 NB, Enschede, The Netherlands.
| | - João Pedro Almeida
- Department of Robotics and Mechatronics, The Faculty of Electrical Engineering, Mathematics and Computer Science, Technical Medical Centre, University of Twente, 7522 NB, Enschede, The Netherlands
| | - Momen Abayazid
- Department of Robotics and Mechatronics, The Faculty of Electrical Engineering, Mathematics and Computer Science, Technical Medical Centre, University of Twente, 7522 NB, Enschede, The Netherlands
| | - Jurgen J Fütterer
- Department of Robotics and Mechatronics, The Faculty of Electrical Engineering, Mathematics and Computer Science, Technical Medical Centre, University of Twente, 7522 NB, Enschede, The Netherlands
- Department of Medical Imaging, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
28
|
The Effect of Electrochemotherapy on Breast Cancer Cell Lines. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2019-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Despite advances in treatment, breast cancer remains one of the leading causes of death, and obviously new approaches to the treatment are needed. Due to minimal side effects, unlike more aggressive forms of therapy such as chemotherapy and radiotherapy, the application of irreversible electroporation-electrochemotherapy represents a new modality in the treatment of cancer. Electrochemotherapy uses an electric field (375 V cm -1) to allow increased absorption of chemotherapeutic drugs selectively in tumor cells. Accordingly, the total dose of these agents can be significantly reduced and numerous side effects can be avoided in this way. The Real Time Cell Analysis-RTCA-xCELLigence system was used to monitor the cytotoxic effects of the treatment. The results confirmed the justification of the use of paclitaxel in chemotherapy and showed cytotoxic effects of paclitaxel which were time and dose-dependent in both cell lines. When paclitaxel was administered in combination with an electric field, in both cell lines, the results showed a greater cytotoxic effect compared to the same treatment without electrochemotherapy. MCF-7 cells are more sensitive to electrochemotherapy treatment with paclitaxel compared to MDA-MB-231. Electrochemotherapy using paclitaxel in MCF-7 cells had a 6.4-fold higher cytotoxicity compared to the treatment only with paclitaxel. The results obtained support the current knowledge of the benefits of electrochemotherapy. It has been shown that electrochemotherapy can significantly increase the effects of paclitaxel in the tested cell lines. In this way, a very high concentration of chemotherapeutics in the targeted tissue was achieved, which represents localized chemotherapy.
Collapse
|
29
|
Beitel-White N, Lorenzo MF, Zhao Y, Brock RM, Coutermarsh-Ott S, Allen IC, Manuchehrabadi N, Davalos RV. Multi-Tissue Analysis on the Impact of Electroporation on Electrical and Thermal Properties. IEEE Trans Biomed Eng 2021; 68:771-782. [PMID: 32746081 PMCID: PMC8048145 DOI: 10.1109/tbme.2020.3013572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Tissue electroporation is achieved by applying a series of electric pulses to destabilize cell membranes within the target tissue. The treatment volume is dictated by the electric field distribution, which depends on the pulse parameters and tissue type and can be readily predicted using numerical methods. These models require the relevant tissue properties to be known beforehand. This study aims to quantify electrical and thermal properties for three different tissue types relevant to current clinical electroporation. METHODS Pancreatic, brain, and liver tissue were harvested from pigs, then treated with IRE pulses in a parallel-plate configuration. Resulting current and temperature readings were used to calculate the conductivity and its temperature dependence for each tissue type. Finally, a computational model was constructed to examine the impact of differences between tissue types. RESULTS Baseline conductivity values (mean 0.11, 0.14, and 0.12 S/m) and temperature coefficients of conductivity (mean 2.0, 2.3, and 1.2 % per degree Celsius) were calculated for pancreas, brain, and liver, respectively. The accompanying computational models suggest field distribution and thermal damage volumes are dependent on tissue type. CONCLUSION The three tissue types show similar electrical and thermal responses to IRE, though brain tissue exhibits the greatest differences. The results also show that tissue type plays a role in the expected ablation and thermal damage volumes. SIGNIFICANCE The conductivity and its changes due to heating are expected to have a marked impact on the ablation volume. Incorporating these tissue properties aids in the prediction and optimization of electroporation-based therapies.
Collapse
|
30
|
Rojo RD, Perez JVD, Damasco JA, Yu G, Lin SC, Heralde FM, Novone NM, Santos EB, Lin SH, Melancon MP. Combinatorial effect of radium-223 and irreversible electroporation on prostate cancer bone metastasis in mice. Int J Hyperthermia 2021; 38:650-662. [PMID: 33882773 PMCID: PMC8495630 DOI: 10.1080/02656736.2021.1914873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Metastatic prostate cancer in bone is difficult to treat as the tumor cells are relatively resistant to hormonal or chemotherapies when compared to primary prostate cancer. Irreversible electroporation (IRE) is a minimally invasive ablation procedure that has potential applications in the management of prostate cancer in bone. However, a common limitation of IRE is tumor recurrence, which arises from incomplete ablation that allows remaining cancer cells to proliferate. In this study, we combined IRE with radium-223 (Ra-223), a bone-seeking radionuclide that emits short track length alpha particles and thus is associated with reduced damage to the bone marrow and evaluated the impact of the combination treatment on bone-forming prostate cancer tumors. METHODS The antitumor activity of IRE and Ra-223 as single agents and in combination was tested in vitro against three bone morphogenetic protein 4 (BMP4)-expressing prostate cancer cell lines (C4-2B-BMP4, Myc-CaP-BMP4, and TRAMP-C2-BMP4). Similar evaluation was performed in vivo using a bone-forming C4-2B-BMP4 tumor model in nude mice. RESULTS IRE and Ra-223 as monotherapy inhibited prostate cancer cell proliferation in vitro, and their combination resulted in significant reduction in cell viability compared to monotherapy. In vivo evaluation revealed that IRE with single-dose administration of Ra-233, compared to IRE alone, reduced the rate of tumor recurrence by 40% following initial apparent complete ablation and decreased the rate of proliferation of incompletely ablated tumor as quantified in Ki-67 staining (53.58 ± 16.0% for IRE vs. 20.12 ± 1.63%; for IRE plus Ra-223; p = 0.004). Histological analysis qualitatively showed the enhanced killing of tumor cells adjacent to bone by Ra-223 compared to those treated with IRE alone. CONCLUSION IRE in combination with Ra-223, which enhanced the destruction of cancer cells that are adjacent to bone, resulted in reduction of tumor recurrence through improved clearance of proliferative cells in the tumor region.
Collapse
Affiliation(s)
- Raniv D. Rojo
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States of America,College of Medicine, University of the Philippines Manila, Pedro Gil St., Ermita, Manila, National Capital Region 1000, Republic of the Philippines
| | - Joy Vanessa D. Perez
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States of America,College of Medicine, University of the Philippines Manila, Pedro Gil St., Ermita, Manila, National Capital Region 1000, Republic of the Philippines
| | - Jossana A. Damasco
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States of America
| | - Guoyu Yu
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas, 77030, United States of America
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas, 77030, United States of America
| | - Francisco M. Heralde
- College of Medicine, University of the Philippines Manila, Pedro Gil St., Ermita, Manila, National Capital Region 1000, Republic of the Philippines
| | - Nora M. Novone
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas, 77030, United States of America
| | - Elmer B. Santos
- Department of Nuclear Medicine, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas, 77030, United States of America
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas, 77030, United States of America,MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, 6767 Bertner Ave., Houston, Texas, 77030, United States of America
| | - Marites P. Melancon
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States of America,MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, 6767 Bertner Ave., Houston, Texas, 77030, United States of America
| |
Collapse
|
31
|
Ruarus AH, Barabasch A, Catalano O, Leen E, Narayanan G, Nilsson A, Padia SA, Wiggermann P, Scheffer HJ, Meijerink MR. Irreversible Electroporation for Hepatic Tumors: Protocol Standardization Using the Modified Delphi Technique. J Vasc Interv Radiol 2020; 31:1765-1771.e15. [PMID: 32978054 DOI: 10.1016/j.jvir.2020.02.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 02/06/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE A consensus study of panelists was performed to provide a uniform protocol regarding (contra) indications, procedural parameters, perioperative care, and follow-up of irreversible electroporation (IRE) for the treatment of hepatic malignancies. MATERIALS AND METHODS Interventional radiologists who had 2 or more publications on IRE, reporting at least 1 patient cohort in the field of hepatobiliary IRE, were recruited. The 8 panelists were asked to anonymously complete 3 iterative rounds of IRE-focused questionnaires to collect data according to a modified Delphi technique. Consensus was defined as having reached 80% or greater agreement. RESULTS Panel members' response rates were 88%, 75%, and 88% in rounds 1, 2, and 3, respectively; consensus was reached on 124 of 136 items (91%). Percutaneous or intraoperative hepatic IRE should be considered for unresectable primary and secondary malignancies that are truly unsuitable for thermal ablation because of proximity to critical structures. Absolute contraindications are ventricular arrhythmias, cardiac stimulation devices, and congestive heart failure of New York Heart Association class 3 or higher. A metal stent outside the ablation zone should not be considered a contraindication. For the only commercially available IRE device, the recommended settings are an inter-electrode distance of 10-20 mm and an exposure length of 20 mm. After 10 test pulses, 90 treatment pulses of 1500 V/cm should be delivered continuously, with a pulse length of 70-90 μs. The first post-procedural follow-up should take place 1 month after IRE and thereafter every 3 months, using cross-sectional imaging plus tumor marker assessment. CONCLUSIONS This article provides recommendations, created by a modified Delphi consensus study, regarding patient selection, workup, procedure, and follow-up of IRE treatment for hepatic malignancies.
Collapse
Affiliation(s)
- Alette H Ruarus
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Alexandra Barabasch
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Orlando Catalano
- Department of Radiology, Istituto Nazionale Tumori Fondazione G.Pascale, Naples, Italy
| | - Edward Leen
- Department of Experimental Medicine, Imperial College London, London, United Kingdom
| | - Govindarajan Narayanan
- Department of Interventional Radiology, Miami Cardiac and Vascular Institute, Miami, Florida
| | - Anders Nilsson
- Department of Medical Imaging and Physiology, Lund University Hospital, Lund, Sweden
| | - Siddharth A Padia
- Department of Radiology, University of California Los Angeles, Los Angeles, California
| | - Philipp Wiggermann
- Department of Radiology and Nuclear Medicine, Academic Teaching Hospital Braunschweig, Braunschweig, Germany
| | - Hester J Scheffer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Martijn R Meijerink
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
32
|
Physiological changes may dominate the electrical properties of liver during reversible electroporation: Measurements and modelling. Bioelectrochemistry 2020; 136:107627. [PMID: 32784102 DOI: 10.1016/j.bioelechem.2020.107627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 01/19/2023]
Abstract
This study presents electrical measurements (both conductivity during the pulses and impedance spectroscopy before and after) performed in liver tissue of mice during electroporation with classical electrochemotherapy conditions (8 pulses of 100 µs duration). A four-needle electrode arrangement inserted in the tissue was used for the measurements. The undesirable effects of the four-electrode geometry, notably concerning its sensitivity, were quantified and discussed showing how the electrode geometry chosen for the measurements can impact the results. Numerical modelling was applied to the information collected during the pulse, and to the impedance spectra acquired before and after the pulses sequence. Our results show that the numerical results were not consistent, suggesting that other collateral phenomena not considered in the model are at work during electroporation in vivo. We show how the modification in the volume of the intra and extra cellular media, likely caused by the vascular lock effect, could at least partially explain the recorded impedance evolution. In the present study we demonstrate the significant impact that physiological effects have on impedance changes following electroporation at the tissue scale and the potential need of introducing them into the numerical models. The code for the numerical model is publicly available at https://gitlab.inria.fr/poignard/4-electrode-system.
Collapse
|
33
|
Hogenes AM, Slump CH, Te Riet O G Scholten GA, Meijerink MR, Fütterer JJ, van Laarhoven CJHM, Overduin CG, Stommel MWJ. Effect of irreversible electroporation parameters and the presence of a metal stent on the electric field line pattern. Sci Rep 2020; 10:13517. [PMID: 32782339 PMCID: PMC7421881 DOI: 10.1038/s41598-020-70308-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022] Open
Abstract
The final ablation zone created with irreversible electroporation (IRE) depends on the size, shape and strength of the electric field that is influenced by several parameters. A profound understanding of the effect of IRE parameter alterations on the electric field are a prerequisite for a safe and effective treatment. Here, we demonstrate a semolina in castor oil model that enables visualization of the static electric field developed by a high-voltage generator between two needle-electrodes. We intuitively visualize the variation in electric field line pattern for selected IRE parameters; active needle length, inter-needle distance, applied voltage and presence of a nearby metal stent, by cameras in three dimensions. The observations were compared to and supported by two-dimensional numerical simulations of the electric field. Our semolina model visualizes the disturbance of the electric field by a metal stent, potentially leading to an incomplete tumour ablation between the needles. The reduction in electric field strength and the area at risk for incomplete tumour ablation are confirmed by the numerical simulations. The semolina model provides insight in the fundamental physics of the electric field, the effect of alterations in IRE parameter combinations and presence of a metal stent within the ablation zone.
Collapse
Affiliation(s)
- Annemiek M Hogenes
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Centre, P.O. box 9101 (766), 6500 HB, Nijmegen, The Netherlands.
| | - Cornelis H Slump
- Department of Robotics and Mechatronics, University of Twente, Enschede, The Netherlands
| | | | - Martijn R Meijerink
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, Vrije Universiteit-Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Jurgen J Fütterer
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Centre, P.O. box 9101 (766), 6500 HB, Nijmegen, The Netherlands.,Department of Robotics and Mechatronics, University of Twente, Enschede, The Netherlands
| | | | - Christiaan G Overduin
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Centre, P.O. box 9101 (766), 6500 HB, Nijmegen, The Netherlands
| | - Martijn W J Stommel
- Department of Surgery, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
34
|
Timmer FEF, Geboers B, Ruarus AH, Schouten EAC, Nieuwenhuizen S, Puijk RS, de Vries JJJ, Meijerink MR, Scheffer HJ. Irreversible Electroporation for Locally Advanced Pancreatic Cancer. Tech Vasc Interv Radiol 2020; 23:100675. [PMID: 32591191 DOI: 10.1016/j.tvir.2020.100675] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several minimally invasive image guided tumor ablation techniques have been added to the treatment spectrum for locally advanced pancreatic cancer (LAPC). Irreversible electroporation (IRE) might have a significant additive value in the management of this difficult-to-treat disease. As opposed to thermal ablative techniques, IRE induces cell death by the delivery of high-voltage electrical pulses. The electrical energy disrupts the cellular membrane integrity, causes loss of cellular homeostasis and ultimately results in cell death. The extracellular matrix of connective tissue in surrounding delicate structures such as bile ducts, bowel wall, and larger blood vessels is spared. The preservation of these structures makes IRE attractive for the treatment of pancreatic cancers that are unresectable due to their anatomical location (ie, LAPC and local recurrence after surgical resection). In addition to its cytoreductive abilities, evidence is emerging on IRE's capability to induce systemic immunomodulation through active in vivo vaccination against pancreatic cancer cells. These effects in combination with immunotherapy may offer a new treatment paradigm for tumors with low immunogenic potential like pancreatic ductal adenocarcinoma (PDAC). This review discusses several practical and technical issues of IRE for LAPC: clinical evaluation, indications, patient preparations, procedural steps, imaging characteristics, clinical results, and "tricks of the trade" used to improve the safety and efficacy of the treatment. Future directions such as the combination of IRE with immunotherapy will be shortly addressed.
Collapse
Affiliation(s)
- Florentine E F Timmer
- Department of Radiology and Nuclear Medicine at the Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam in Amsterdam, The Netherlands
| | - Bart Geboers
- Department of Radiology and Nuclear Medicine at the Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam in Amsterdam, The Netherlands.
| | - Alette H Ruarus
- Department of Radiology and Nuclear Medicine at the Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam in Amsterdam, The Netherlands
| | - Evelien A C Schouten
- Department of Radiology and Nuclear Medicine at the Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam in Amsterdam, The Netherlands
| | - Sanne Nieuwenhuizen
- Department of Radiology and Nuclear Medicine at the Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam in Amsterdam, The Netherlands
| | - Robbert S Puijk
- Department of Radiology and Nuclear Medicine at the Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam in Amsterdam, The Netherlands
| | - Jan J J de Vries
- Department of Radiology and Nuclear Medicine at the Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam in Amsterdam, The Netherlands
| | - Martijn R Meijerink
- Department of Radiology and Nuclear Medicine at the Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam in Amsterdam, The Netherlands
| | - Hester J Scheffer
- Department of Radiology and Nuclear Medicine at the Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam in Amsterdam, The Netherlands
| |
Collapse
|
35
|
Agnass P, van Veldhuisen E, van Gemert MJC, van der Geld CWM, van Lienden KP, van Gulik TM, Meijerink MR, Besselink MG, Kok HP, Crezee J. Mathematical modeling of the thermal effects of irreversible electroporation for in vitro, in vivo, and clinical use: a systematic review. Int J Hyperthermia 2020; 37:486-505. [DOI: 10.1080/02656736.2020.1753828] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Pierre Agnass
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Eran van Veldhuisen
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Martin J. C. van Gemert
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Cees W. M. van der Geld
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Krijn P. van Lienden
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Thomas M. van Gulik
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Martijn R. Meijerink
- Department of Radiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marc G. Besselink
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - H. Petra Kok
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Vogel JA, van Veldhuisen E, Alles LK, Busch OR, Dijk F, van Gulik TM, Huijzer GM, Besselink MG, van Lienden KP, Verheij J. Time-Dependent Impact of Irreversible Electroporation on Pathology and Ablation Size in the Porcine Liver: A 24-Hour Experimental Study. Technol Cancer Res Treat 2020; 18:1533033819876899. [PMID: 31533537 PMCID: PMC6753518 DOI: 10.1177/1533033819876899] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Irreversible electroporation causes cell death through low frequency, high voltage electrical pulses and is increasingly used to treat non-resectable cancers. A recent systematic review revealed that tissue damage through irreversible electroporation is time-dependent, but the impact of time on the ablation zone size remains unknown. Irreversible electroporation ablations were performed hourly during 24 consecutive hours in the peripheral liver of 2 anaesthetized domestic pigs using clinical treatment settings. Immediately after the 24th ablation, the livers were harvested and examined for tissue response in time based on macroscopic and microscopic pathology. The impact of time on these outcomes was assessed with Spearman rank correlation test. Ablation zones were sharply demarcated as early as 1 hour after treatment. During 24 hours, the ablation zones showed a significant increase in diameter (rs = 0.493, P = .014) and total surface (rs = 0.499, P = .013), whereas the impact of time on the homogeneous ablated area was not significant (rs = 0.172, P = .421). Therefore, the increase in size could mainly be attributed to an increase in the transition zone. Microscopically, the ablation zones showed progression in cell death and inflammation. This study assessed the dynamics of irreversible electroporation on the porcine liver during 24 consecutive hours and found that the pathological response (ie, cell death/inflammation), and ablation size continue to develop for at least 24 hours. Consequently, future studies on irreversible electroporation should prolong their observation period.
Collapse
Affiliation(s)
- Jantien A Vogel
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Eran van Veldhuisen
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Lindy K Alles
- Department of Experimental Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Olivier R Busch
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Frederike Dijk
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Thomas M van Gulik
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Goos M Huijzer
- Department of Experimental Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Marc G Besselink
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Krijn P van Lienden
- Department of Interventional Radiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Joanne Verheij
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
37
|
Klein N, Mercadal B, Stehling M, Ivorra A. In vitro study on the mechanisms of action of electrolytic electroporation (E2). Bioelectrochemistry 2020; 133:107482. [PMID: 32062417 DOI: 10.1016/j.bioelechem.2020.107482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/03/2020] [Accepted: 02/08/2020] [Indexed: 12/18/2022]
Abstract
Electrolytic Electroporation (E2) is the combination of reversible electroporation and electrolysis. It has been proposed as a novel treatment option to ablate tissue percutaneously. The present in vitro study in cells in suspension was performed to investigate the underlying mechanisms of action of E2. Different types of experiments were performed to isolate the effects of the electrolysis and the electroporation components of the treatment. Additionally, thermal simulations were performed to determine whether significant temperature increase contributes to the effect. The results indicate that E2's cell killing efficacy is due to a combinational effect of electrolysis and reversible electroporation that takes place within the first two minutes after E2 application. The results further show that cell death after E2 treatment is significantly delayed. These observations suggest that cell death is induced in permeabilized cells due to the uptake of electrolysis species. Thermal simulations revealed a significant but innocuous temperature increase.
Collapse
Affiliation(s)
- Nina Klein
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, C/Roc Boronat 138, E-08018 Barcelona, Spain; Institut fur Bildgebende Diagnostik, Strahlenbergerstrasse 110, 63067 Offenbach, Germany; Inter Science GmbH, Reussblickstr 23, 6038 Gisikon, Lucerne, Switzerland; Catalan Industrial Doctorates Program, Spain.
| | - Borja Mercadal
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, C/Roc Boronat 138, E-08018 Barcelona, Spain
| | - Michael Stehling
- Institut fur Bildgebende Diagnostik, Strahlenbergerstrasse 110, 63067 Offenbach, Germany; Inter Science GmbH, Reussblickstr 23, 6038 Gisikon, Lucerne, Switzerland
| | - Antoni Ivorra
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, C/Roc Boronat 138, E-08018 Barcelona, Spain; Serra Húnter Fellow Programme, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
38
|
Abstract
Interventional therapies are emerging modalities for the treatment of localized prostate cancer. Their aim is to reduce the morbidity associated with radical therapies (rT) by minimizing damage to non-cancerous tissue, with priority given to sparing key structures such as the neurovascular bundles, external sphincter, bladder neck, and rectum, while maintaining local cancer control. Interventional ablative technologies deliver energy in different ways to destroy cancer cells. The most widely investigated techniques are brachytherapy, external beam radiotherapy, cryotherapy, and high-intensity focused ultrasound. Although functional outcomes of focal therapies have been encouraging, with generally low rates of urinary incontinence and erectile dysfunction, robust medium- and long-term oncological outcomes are not available for all techniques. To date, major controversies in focal therapy concern appropriate patient selection, efficacy of focal therapies, as well as treatment paradigms based on the dominant index lesion hypothesis. This review articles discusses the current status of interventional therapies and the oncological and functional outcomes.
Collapse
|
39
|
DeWitt MR, Latouche EL, Kaufman JD, Fesmire CC, Swet JH, Kirks RC, Baker EH, Vrochides D, Iannitti DA, McKillop IH, Davalos RV, Sano MB. Simplified Non-Thermal Tissue Ablation With a Single Insertion Device Enabled by Bipolar High-Frequency Pulses. IEEE Trans Biomed Eng 2019; 67:2043-2051. [PMID: 31751216 DOI: 10.1109/tbme.2019.2954122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To demonstrate the feasibility of a single electrode and grounding pad approach for delivering high frequency irreversible electroporation treatments (H-FIRE) in in-vivo hepatic tissue. METHODS Ablations were created in porcine liver under surgical anesthesia by adminstereing high frequency bursts of 0.5-5.0 μs pulses with amplitudes between 1.1-1.7 kV in the absence of cardiac synchronization or intraoperative paralytics. Finite element simulations were used to determine the electric field strength associated with the ablation margins (ELethal) and predict the ablations feasible with next generation electronics. RESULTS All animals survived the procedures for the protocol duration without adverse events. ELethal of 2550, 1650, and 875 V/cm were found for treatments consisting of 100x bursts containing 0.5 μs pulses and 25, 50, and 75 μs of energized-time per burst, respectively. Treatments with 1 μs pulses consisting of 100 bursts with 100 μs energized-time per burst resulted in ELethal of 650 V/cm. CONCLUSION A single electrode and grounding pad approach was successfully used to create ablations in hepatic tissue. This technique has the potential to reduce challenges associated with placing multiple electrodes in anatomically challenging environments. SIGNIFICANCE H-FIRE is an in situ tumor ablation approach in which electrodes are placed within or around a targeted region to deliver high voltage electrical pulses. Electric fields generated around the electrodes induce irrecoverable cell membrane damage leading to predictable cell death in the relative absence of thermal damage. The sparing of architectural integrity means H-FIRE offers potential advantages compared to thermal ablation modalities for ablating tumors near critical structures.
Collapse
|
40
|
Es R, Groen MHA, Stehouwer M, Doevendans PA, Wittkampf FHM, Neven K. In vitro analysis of the origin and characteristics of gaseous microemboli during catheter electroporation ablation. J Cardiovasc Electrophysiol 2019; 30:2071-2079. [DOI: 10.1111/jce.14091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 12/15/2022]
Affiliation(s)
- René Es
- Department of CardiologyUniversity Medical Center UtrechtUtrecht The Netherlands
| | - Marijn H. A. Groen
- Department of CardiologyUniversity Medical Center UtrechtUtrecht The Netherlands
| | - Marco Stehouwer
- Department of Extracorporeal CirculationSt Antonius HospitalNieuwegein The Netherlands
| | - Pieter A. Doevendans
- Department of CardiologyUniversity Medical Center UtrechtUtrecht The Netherlands
- Netherlands Heart InstituteUtrecht The Netherlands
| | - Fred H. M. Wittkampf
- Department of CardiologyUniversity Medical Center UtrechtUtrecht The Netherlands
| | - Kars Neven
- Department of CardiologyUniversity Medical Center UtrechtUtrecht The Netherlands
- Department of ElectrophysiologyAlfried Krupp KrankenhausEssen Germany
- Faculty of HealthWitten/Herdecke UniversityWitten Germany
| |
Collapse
|
41
|
Lv Y, Yao C, Rubinsky B. A 2-D Cell Layer Study on Synergistic Combinations of High-Voltage and Low-Voltage Irreversible Electroporation Pulses. IEEE Trans Biomed Eng 2019; 67:957-965. [PMID: 31265380 DOI: 10.1109/tbme.2019.2925774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Irreversible electroporation (IRE) employs brief, high-electric field pulses to ablate tumors while preserving the extracellular matrix. Recently, we showed that combining short high-voltage (SHV) IRE pulses and long low-voltage (LLV) IRE pulses can enlarge the tissue ablation region, presumably through a synergistic effect. OBJECTIVE The goal of this study is to further investigate the effect of this combination on a 2-D cell layer tumor model. METHODS 2-D layers of tumor cells are exposed to various SHV and LLV combinations, and the results of propidium iodide (PI) and fluorescein diacetate staining are examined to correlate treatment protocols with the ensuing irreversible and reversible electroporation areas. RESULTS The combination of SHV+LLV pulses produces a larger area of electroporation and ablation than LLV+SHV pulses, LLV pulses alone, and SHV pulses alone. CONCLUSION Judiciously combining SHV and LLV pulses can produce a synergistic effect that enlarges the electroporation-induced ablation area. A hypothetical explanation for this effect is that it involves a combination of pore expansion and electrolysis induced by LLV pulses in the area that had been reversibly permeabilized by the SHV pulses. SIGNIFICANCE This paper is valuable for the design of improved IRE protocols and provides a hypothesis for the mechanisms involved.
Collapse
|
42
|
Irreversible electroporation for hepatic tumors. J Ultrasound 2019; 22:1-3. [PMID: 30840216 DOI: 10.1007/s40477-019-00367-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/21/2019] [Indexed: 01/04/2023] Open
|
43
|
Scheltema MJ, Chang JI, van den Bos W, Gielchinsky I, Nguyen TV, Reijke TDM, Siriwardana AR, Böhm M, de la Rosette JJ, Stricker PD. Impact on genitourinary function and quality of life following focal irreversible electroporation of different prostate segments. ACTA ACUST UNITED AC 2019; 24:268-275. [PMID: 30211680 DOI: 10.5152/dir.2018.17374] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE We aimed to evaluate the genitourinary function and quality of life (QoL) following the ablation of different prostate segments with irreversible electroporation (IRE) for localized prostate cancer (PCa). METHODS Sixty patients who received primary focal IRE for organ-confined PCa were recruited for this study. Patients were evaluated for genitourinary function and QoL per prostate segment treated (anterior vs. posterior, apex vs. base vs. apex-to-base, unilateral vs. bilateral). IRE system settings and patient characteristics were compared between patients with preserved vs. those with impaired erectile function and urinary continence. Data were prospectively collected at baseline, 3, 6, and 12 months using the expanded prostate cancer index composite, American Urological Association symptom score, SF-12 physical and mental component summary surveys. Difference over time within segments per questionnaire was evaluated using the Wilcoxon's signed rank test. Outcome differences between segments were assessed using covariance models. Baseline measurements included questionnaire scores, age, and prostate volume. RESULTS There were no statistically significant changes over time for overall urinary (P = 0.07-0.89), bowel (P = 0.06-0.79), physical (P = 0.18-0.71) and mental (P = 0.45-0.94) QoL scores within each segment. Deterioration of sexual function scores was observed at 6 months within each segment (P = 0.001-0.16). There were no statistically significant differences in QoL scores between prostate segments (P = 0.08-0.97). Older patients or those with poor baseline sexual function at time of treatment were associated with a greater risk of developing erectile dysfunction. CONCLUSION IRE is a feasible modality for all prostate segments without any significantly different effect on the QoL outcomes. Older patients and those with poor sexual function need to be counseled regarding the risk of erectile dysfunction.
Collapse
Affiliation(s)
- Matthijs J Scheltema
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia; Amsterdam UMC, University of Amsterdam, the Netherlands
| | - John I Chang
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst; St Vincent's Prostate Cancer Centre, Darlinghurst, NSW, Australia
| | - Willemien van den Bos
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst., St Vincent's Prostate Cancer Centre, Darlinghurst, NSW, Australia
| | - Ilan Gielchinsky
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia, St Vincent's Prostate Cancer Centre, Darlinghurst, NSW, Australia
| | - Tuan V Nguyen
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia,. University of New South Wales, Sydney, NSW, Australia
| | | | - Amila R Siriwardana
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia; University of New South Wales, Sydney, NSW, Australia
| | - Maret Böhm
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia; Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Jean J de la Rosette
- Amsterdam UMC, University of Amsterdam, the Netherlands, Department of Urology, İstanbul Medipol University, İstanbul, Turkey
| | - Phillip D Stricker
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia; Amsterdam UMC, University of Amsterdam, the Netherlands
| |
Collapse
|
44
|
Conductivity Rise During Irreversible Electroporation: True Permeabilization or Heat? Cardiovasc Intervent Radiol 2018; 41:1257-1266. [PMID: 29687261 PMCID: PMC6021471 DOI: 10.1007/s00270-018-1971-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/18/2018] [Indexed: 12/18/2022]
Abstract
Purpose Irreversible electroporation (IRE) induces apoptosis with high-voltage electric pulses. Although the working mechanism is non-thermal, development of secondary Joule heating occurs. This study investigated whether the observed conductivity rise during IRE is caused by increased cellular permeabilization or heat development. Methods IRE was performed in a gelatin tissue phantom, in potato tubers, and in 30 patients with unresectable colorectal liver metastases (CRLM). Continuous versus sequential pulsing protocols (10-90 vs. 10-30-30-30) were assessed. Temperature was measured using fiber-optic probes. After temperature had returned to baseline, 100 additional pulses were delivered. The primary technique efficacy of the treated CRLM was compared to the periprocedural current rise. Seven patients received ten additional pulses after a 10-min cool-down period. Results Temperature and current rise was higher for the continuous pulsing protocol (medians, gel: 13.05 vs. 9.55 °C and 9 amperes (A) vs. 7A; potato: 12.70 vs. 10.53 °C and 6.0A vs. 6.5A). After cooling-down, current returned to baseline in the gel phantom and near baseline values (Δ2A with continuous- and Δ5A with sequential pulsing) in the potato tubers. The current declined after cooling-down in all seven patients with CRLM, although baseline values were not reached. There was a positive correlation between current rise and primary technique efficacy (p = 0.02); however, the previously reported current increase threshold of 12–15A was reached in 13%. Conclusion The observed conductivity rise during IRE is caused by both cellular permeabilization and heat development. Although a correlation between current rise and efficacy exists, the current increase threshold seems unfeasible for CRLM. Electronic supplementary material The online version of this article (10.1007/s00270-018-1971-7) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Sugrue A, Maor E, Ivorra A, Vaidya V, Witt C, Kapa S, Asirvatham S. Irreversible electroporation for the treatment of cardiac arrhythmias. Expert Rev Cardiovasc Ther 2018; 16:349-360. [DOI: 10.1080/14779072.2018.1459185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alan Sugrue
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Elad Maor
- Leviev Heart Center, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Antoni Ivorra
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Vaibhav Vaidya
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Chance Witt
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Suraj Kapa
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Samuel Asirvatham
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
46
|
Ruarus A, Vroomen L, Puijk R, Scheffer H, Zonderhuis B, Kazemier G, van den Tol M, Berger F, Meijerink M. Irreversible Electroporation in Hepatopancreaticobiliary Tumours. Can Assoc Radiol J 2018; 69:38-50. [DOI: 10.1016/j.carj.2017.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/25/2017] [Indexed: 12/18/2022] Open
Abstract
Hepatopancreaticobiliary tumours are often diagnosed at an advanced disease stage, in which encasement or invasion of local biliary or vascular structures has already occurred. Irreversible electroporation (IRE) is an image-guided tumour ablation technique that induces cell death by exposing the tumour to high-voltage electrical pulses. The cellular membrane is disrupted, while sparing the extracellular matrix of critical tubular structures. The preservation of tissue integrity makes IRE an attractive treatment option for tumours in the vicinity of vital structures such as splanchnic blood vessels and major bile ducts. This article reviews current data and discusses future trends of IRE for hepatopancreaticobiliary tumours.
Collapse
Affiliation(s)
- A.H. Ruarus
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - L.G.P.H. Vroomen
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - R.S. Puijk
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - H.J. Scheffer
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - B.M. Zonderhuis
- Department of Surgery, VU University Medical Center, Amsterdam, the Netherlands
| | - G. Kazemier
- Department of Surgery, VU University Medical Center, Amsterdam, the Netherlands
| | - M.P. van den Tol
- Department of Surgery, VU University Medical Center, Amsterdam, the Netherlands
| | - F.H. Berger
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - M.R. Meijerink
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
47
|
Yao C, Lv Y, Zhao Y, Dong S, Liu H, Ma J. Synergistic combinations of short high-voltage pulses and long low-voltage pulses enhance irreversible electroporation efficacy. Sci Rep 2017; 7:15123. [PMID: 29123231 PMCID: PMC5680269 DOI: 10.1038/s41598-017-15494-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/27/2017] [Indexed: 12/18/2022] Open
Abstract
Irreversible electroporation (IRE) uses ~100 μs pulsed electric fields to disrupt cell membranes for solid tumor ablation. Although IRE has achieved exciting preliminary clinical results, implementing IRE could be challenging because of volumetric limitations at the ablation region. Combining short high-voltage (SHV: 1600V, 2 μs, 1 Hz, 20 pulses) pulses with long low-voltage (LLV: 240-480 V, 100 μs, 1 Hz, 60-80 pulses) pulses induces a synergistic effect that enhances IRE efficacy. Here, cell cytotoxicity and tissue ablation were investigated. The results show that combining SHV pulses with LLV pulses induced SKOV3 cell death more effectively, and compared to either SHV pulses or LLV pulses applied alone, the combination significantly enhanced the ablation region. Particularly, prolonging the lag time (100 s) between SHV and LLV pulses further reduced cell viability and enhanced the ablation area. However, the sequence of SHV and LLV pulses was important, and the LLV + SHV combination was not as effective as the SHV + LLV combination. We offer a hypothesis to explain the synergistic effect behind enhanced cell cytotoxicity and enlarged ablation area. This work shows that combining SHV pulses with LLV pulses could be used as a focal therapy and merits investigation in larger pre-clinical models and microscopic mechanisms.
Collapse
Affiliation(s)
- Chenguo Yao
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, the School of Electrical Engineering, Chongqing University, Chongqing, 400030, China.
| | - Yanpeng Lv
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, the School of Electrical Engineering, Chongqing University, Chongqing, 400030, China.
| | - Yajun Zhao
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, the School of Electrical Engineering, Chongqing University, Chongqing, 400030, China
| | - Shoulong Dong
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, the School of Electrical Engineering, Chongqing University, Chongqing, 400030, China
| | - Hongmei Liu
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, the School of Electrical Engineering, Chongqing University, Chongqing, 400030, China
| | - Jianhao Ma
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, the School of Electrical Engineering, Chongqing University, Chongqing, 400030, China
| |
Collapse
|
48
|
Abstract
The target of focal therapy (FT) in prostate cancer (PC) is partial treatment of the prostate aiming at preserving surrounding anatomical structures. The intention is to minimize typical side effects of radical treatment options combined with local tumor control. Numerous established and new technologies are used. Results of published studies showed a good safety profile, few side effects and good preservation of functional results. Oncologic long-term data are lacking so far. Photodynamic therapy (PDT) is the only technology that has been studied in a published prospective randomized trial. The FT is challenged by the multifocality of PC; therefore, the quality of prostate biopsy, histopathological assessment as well as imaging are of paramount importance. Multiparametric magnetic resonance imaging (MRI) has gained increasing importance. The FT is experimental and should only be offered within clinical trials.
Collapse
|
49
|
Novickij V, Švedienė J, Paškevičius A, Novickij J. In vitro evaluation of nanosecond electroporation against Trichophyton rubrum with or without antifungal drugs and terpenes. MYCOSCIENCE 2017. [DOI: 10.1016/j.myc.2017.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Vroomen LGPH, Scheffer HJ, Melenhorst MCAM, van Grieken N, van den Tol MP, Meijerink MR. Irreversible Electroporation to Treat Malignant Tumor Recurrences Within the Pelvic Cavity: A Case Series. Cardiovasc Intervent Radiol 2017; 40:1631-1640. [PMID: 28470395 PMCID: PMC5581368 DOI: 10.1007/s00270-017-1657-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/19/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To describe the initial experience with irreversible electroporation (IRE) to treat pelvic tumor recurrences. METHODS A retrospective single-center analysis was performed. Adverse events were recorded using Common Terminology Criteria of Adverse Events (CTCAE) 4.0. Clinical outcome was determined using pain- and general- symptom assessment, including Seddon's peripheral nerve injury (PNI) types. Radiological outcome was evaluated by comparing baseline with three-month 18F-FDG PET-CT follow-up. RESULTS Eight patients (nine tumors [recurrences of primary rectal (n = 4), anal (n = 1), sigmoid (n = 1), cervical (n = 1), and renal cell carcinoma (n = 1)]) underwent percutaneous IRE as salvage therapy. Median longest tumor diameter was 3.7 cm (range 1.2-7.0). One CTCAE grade III adverse event (hemorrhage) and eight CTCAE grade II complications occurred in 6/8 patients: vagino-tumoral fistula (n = 1), lower limb motor loss (n = 3; PNI type II) with partial recovery in one patient, hypotonic bladder (n = 2; PNI types I and II) with complete recovery in one patient, and upper limb motor loss (n = 2; PNI type II) with partial recovery in both patients. No residual tumor tissue was observed at 3-month follow-up. After a median follow-up of 12 months, local progression was observed in 5/9 lesions (4/5 were >3 cm pre-IRE); one lesion was successfully retreated. Debilitating preprocedural pain (n = 3) remained unchanged (n = 1) or improved (n = 2). CONCLUSION IRE may represent a suitable technique to treat pelvic tumor recurrences, although permanent neural function loss can occur. Complete ablation seems realistic for smaller lesions; for larger lesions symptom control should be the focus.
Collapse
Affiliation(s)
- L G P H Vroomen
- Department of Radiology and Nuclear Medicine, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - H J Scheffer
- Department of Radiology and Nuclear Medicine, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - M C A M Melenhorst
- Department of Radiology and Nuclear Medicine, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - N van Grieken
- Department of Pathology, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - M P van den Tol
- Department of Surgical Oncology, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - M R Meijerink
- Department of Radiology and Nuclear Medicine, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|