Liang K, Mu W, Huang M, Yu Z, Lai Q. Simultaneous detection of five indices of hepatitis B based on an integrated automatic microfluidic device.
Biomed Microdevices 2006;
9:325-33. [PMID:
17195106 DOI:
10.1007/s10544-006-9037-z]
[Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Immunophenotyping evaluation is of particular importance for the clinical diagnosis, therapy, and prognosis of viral hepatitis. In this study, an integrated micro flow device has been developed to detect the differentiated antigens/antibodies for immunophenotyping of viral hepatitis. The sensors were fabricated with plasma-polymerized ethylenediamine film (PPF) and nanometer-sized gold particles (nanogold) on which the different hepatitis B antigens/antibodies (markers) were subsequently immobilized. Monitoring the changes in the potential signals before and after the antigen-antibody interaction provides the basis for an immunoassay that is simple, rapid, and cost-effective. It permits the detection of hepatitis B in the dynamic concentration range of 2 orders of magnitude (10(-6) g x L(-1) - 10(-4) g x L(-1)). Up to 7 successive assay cycles with retentive sensitivity were achieved for the sensors regenerated by 8 M urea. Moreover, the microfluidic device was applied to evaluate a number of practical specimens with analytical results in acceptable agreement with those clinically classified. The newly proposed multiparameter analysis technique provides a feasible alternative tool for the diagnosis and monitoring of hepatitis B.
Collapse