1
|
Yao J, Rotenberg D, Whitfield AE. Delivery of maize mosaic virus to planthopper vectors by microinjection increases infection efficiency and facilitates functional genomics experiments in the vector. J Virol Methods 2019; 270:153-162. [DOI: 10.1016/j.jviromet.2019.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/09/2019] [Accepted: 05/23/2019] [Indexed: 12/24/2022]
|
2
|
Abstract
The complete genome sequence of maize mosaic virus (MMV) was obtained using next-generation sequencing from infected Peregrinus maidis and rapid amplification of cDNA ends from infected Zea mays. The genome of MMV is 12,170 bases, and this project completed the 5′ and 3′ ends and amended the polymerase sequence. The complete genome sequence of maize mosaic virus (MMV) was obtained using next-generation sequencing from infected Peregrinus maidis and rapid amplification of cDNA ends from infected Zea mays. The genome of MMV is 12,170 bases, and this project completed the 5′ and 3′ ends and amended the polymerase sequence.
Collapse
|
3
|
Read DA, Featherston J, Rees DJG, Thompson GD, Roberts R, Flett BC, Mashingaidze K, Pietersen G, Kiula B, Kullaya A, Mbega ER. Molecular characterization of Morogoro maize-associated virus, a nucleorhabdovirus detected in maize (Zea mays) in Tanzania. Arch Virol 2019; 164:1711-1715. [PMID: 30900068 DOI: 10.1007/s00705-019-04212-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/20/2019] [Indexed: 01/17/2023]
Abstract
RNAtag-seq of maize samples collected in Tanzania revealed the presence of a previously undescribed nucleorhabdovirus, tentatively named "Morogoro maize-associated virus" (MMaV), in three samples. The MMaV genome is 12,185-12,187 nucleotides long and shares a 69-70% nucleotide sequence identity with taro vein chlorosis virus. Annotation of the genomes showed a typical nucleorhabdovirus gene organization. PCR was unable to detect the same virus in the remaining 35 samples collected in the region.
Collapse
Affiliation(s)
- David Alan Read
- Agricultural Research Council-Biotechnology Platform, Onderstepoort, Private Bag X05, Pretoria, 0110, South Africa.
| | - Jonathan Featherston
- Agricultural Research Council-Biotechnology Platform, Onderstepoort, Private Bag X05, Pretoria, 0110, South Africa
| | - David Jasper Gilbert Rees
- Agricultural Research Council-Biotechnology Platform, Onderstepoort, Private Bag X05, Pretoria, 0110, South Africa
| | - Genevieve Dawn Thompson
- Agricultural Research Council-Biotechnology Platform, Onderstepoort, Private Bag X05, Pretoria, 0110, South Africa
| | - Ronel Roberts
- Agricultural Research Council-Plant Protection Research, Queenswood, Private Bag X134, Pretoria, 0001, South Africa
| | - Bradley Charles Flett
- Agricultural Research Council-Grain Crops, Private Bag X1251, Potchefstroom, 2520, South Africa
| | - Kingstone Mashingaidze
- Agricultural Research Council-Grain Crops, Private Bag X1251, Potchefstroom, 2520, South Africa
| | - Gerhard Pietersen
- Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Barnabas Kiula
- Tanzania Agricultural Research Institute (TARI-Ilonga), Kilosa, Morogoro, Tanzania
| | - Alois Kullaya
- Tanzania Agricultural Research Institute (TARI, Mikocheni), Dar es Salaam, Tanzania
| | - Ernest R Mbega
- Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| |
Collapse
|
4
|
Martin KM, Whitfield AE. Cellular localization and interactions of nucleorhabdovirus proteins are conserved between insect and plant cells. Virology 2018; 523:6-14. [PMID: 30056212 DOI: 10.1016/j.virol.2018.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 10/28/2022]
Abstract
Maize mosaic virus (MMV), similar to other nucleorhabdoviruses, replicates in divergent hosts: plants and insects. To compare MMV protein localization and interactions, we visualized autofluorescent protein fusions in both cell types. Nucleoprotein (N) and glycoprotein (G) localized to the nucleus and cytoplasm, phosphoprotein (P) was only found in the nucleus, and 3 (movement) and matrix (M) were present in the cytoplasm. This localization pattern is consistent with the model of nucleorhabdoviral replication of N, P, L and viral RNA forming a complex in the nucleus and the subvirion associating with M and then G during budding into perinuclear space. The comparable localization patterns in both organisms indicates a similar replication cycle. Changes in localization when proteins were co-expressed suggested viral proteins interact thus altering organelle targeting. We documented a limited number of direct protein interactions indicating host factors play a role in the virus protein interactions during the infection cycle.
Collapse
Affiliation(s)
- Kathleen M Martin
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27606, USA.
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
5
|
Ghorbani A, Izadpanah K, Dietzgen RG. Completed sequence and corrected annotation of the genome of maize Iranian mosaic virus. Arch Virol 2017; 163:767-770. [PMID: 29147791 DOI: 10.1007/s00705-017-3646-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
Abstract
Maize Iranian mosaic virus (MIMV) is a negative-sense single-stranded RNA virus that is classified in the genus Nucleorhabdovirus, family Rhabdoviridae. The MIMV genome contains six open reading frames (ORFs) that encode in 3΄ to 5΄ order the nucleocapsid protein (N), phosphoprotein (P), putative movement protein (P3), matrix protein (M), glycoprotein (G) and RNA-dependent RNA polymerase (L). In this study, we determined the first complete genome sequence of MIMV using Illumina RNA-Seq and 3'/5' RACE. MIMV genome ('Fars' isolate) is 12,426 nucleotides in length. Unexpectedly, the predicted N gene ORF of this isolate and of four other Iranian isolates is 143 nucleotides shorter than that of the MIMV coding-complete reference isolate 'Shiraz 1' (Genbank NC_011542), possibly due to a minor error in the previous sequence. Genetic variability among the N, P, P3 and G ORFs of Iranian MIMV isolates was limited, but highest in the G gene ORF. Phylogenetic analysis of complete nucleorhabdovirus genomes demonstrated a close evolutionary relationship between MIMV, maize mosaic virus and taro vein chlorosis virus.
Collapse
Affiliation(s)
- Abozar Ghorbani
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran.,Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | | | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
6
|
Mann KS, Bejerman N, Johnson KN, Dietzgen RG. Cytorhabdovirus P3 genes encode 30K-like cell-to-cell movement proteins. Virology 2016; 489:20-33. [PMID: 26700068 DOI: 10.1016/j.virol.2015.11.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/13/2022]
Abstract
Plant viruses encode movement proteins (MP) to facilitate cell-to-cell transport through plasmodesmata. In this study, using trans-complementation of a movement-defective turnip vein-clearing tobamovirus (TVCV) replicon, we show for the first time for cytorhabdoviruses (lettuce necrotic yellows virus (LNYV) and alfalfa dwarf virus (ADV)) that their P3 proteins function as MP similar to the TVCV P30 protein. All three MP localized to plasmodesmata when ectopically expressed. In addition, we show that these MP belong to the 30K superfamily since movement was inhibited by mutation of an aspartic acid residue in the critical 30K-specific LxD/N50-70G motif. We also report that Nicotiana benthamiana microtubule-associated VOZ1-like transcriptional activator interacts with LNYV P3 and TVCV P30 but not with ADV P3 or any of the MP point mutants. This host protein, which is known to interact with P3 of sonchus yellow net nucleorhabdovirus, may be involved in aiding the cell-to-cell movement of LNYV and TVCV.
Collapse
Affiliation(s)
- Krin S Mann
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nicolas Bejerman
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Karyn N Johnson
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
7
|
Bejerman N, Giolitti F, de Breuil S, Trucco V, Nome C, Lenardon S, Dietzgen RG. Complete genome sequence and integrated protein localization and interaction map for alfalfa dwarf virus, which combines properties of both cytoplasmic and nuclear plant rhabdoviruses. Virology 2015; 483:275-83. [PMID: 26004251 DOI: 10.1016/j.virol.2015.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/01/2015] [Accepted: 05/02/2015] [Indexed: 12/19/2022]
Abstract
We have determined the full-length 14,491-nucleotide genome sequence of a new plant rhabdovirus, alfalfa dwarf virus (ADV). Seven open reading frames (ORFs) were identified in the antigenomic orientation of the negative-sense, single-stranded viral RNA, in the order 3'-N-P-P3-M-G-P6-L-5'. The ORFs are separated by conserved intergenic regions and the genome coding region is flanked by complementary 3' leader and 5' trailer sequences. Phylogenetic analysis of the nucleoprotein amino acid sequence indicated that this alfalfa-infecting rhabdovirus is related to viruses in the genus Cytorhabdovirus. When transiently expressed as GFP fusions in Nicotiana benthamiana leaves, most ADV proteins accumulated in the cell periphery, but unexpectedly P protein was localized exclusively in the nucleus. ADV P protein was shown to have a homotypic, and heterotypic nuclear interactions with N, P3 and M proteins by bimolecular fluorescence complementation. ADV appears unique in that it combines properties of both cytoplasmic and nuclear plant rhabdoviruses.
Collapse
Affiliation(s)
- Nicolás Bejerman
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino a 60 Cuadras k 5,5, Córdoba X5020ICA, Argentina; Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Fabián Giolitti
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino a 60 Cuadras k 5,5, Córdoba X5020ICA, Argentina
| | - Soledad de Breuil
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino a 60 Cuadras k 5,5, Córdoba X5020ICA, Argentina
| | - Verónica Trucco
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino a 60 Cuadras k 5,5, Córdoba X5020ICA, Argentina
| | - Claudia Nome
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino a 60 Cuadras k 5,5, Córdoba X5020ICA, Argentina
| | - Sergio Lenardon
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino a 60 Cuadras k 5,5, Córdoba X5020ICA, Argentina
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
8
|
Abstract
Diseases caused by viruses are found throughout the maize-growing regions of the world and can cause significant losses for producers. In this review, virus diseases of maize and the pathogens that cause them are discussed. Factors leading to the spread of disease and measures for disease control are reviewed, as is our current knowledge of the genetics of virus resistance in this important crop.
Collapse
Affiliation(s)
- Margaret G Redinbaugh
- USDA, Agricultural Research Service, Corn, Soybean and Wheat Quality Research Unit and Department of Plant Pathology, Ohio State University-OARDC, Wooster, Ohio, USA.
| | - José L Zambrano
- Instituto Nacional Autónomo de Investigaciones Agropecuarias (INIAP), Programa Nacional del Maíz, Quito, Ecuador
| |
Collapse
|
9
|
Roy A, Stone AL, Shao J, Otero-Colina G, Wei G, Choudhary N, Achor D, Levy L, Nakhla MK, Hartung JS, Schneider WL, Brlansky RH. Identification and Molecular Characterization of Nuclear Citrus leprosis virus, a Member of the Proposed Dichorhavirus Genus Infecting Multiple Citrus Species in Mexico. PHYTOPATHOLOGY 2015; 105:564-75. [PMID: 25423071 DOI: 10.1094/phyto-09-14-0245-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Citrus leprosis is one of the most destructive diseases of Citrus spp. and is associated with two unrelated virus groups that produce particles primarily in either the cytoplasm or nucleus of infected plant cells. Symptoms of leprosis, including chlorotic spots surrounded by yellow haloes on leaves and necrotic spots on twigs and fruit, were observed on leprosis-affected mandarin and navel sweet orange trees in the state of Querétaro, Mexico. Serological and molecular assays showed that the cytoplasmic types of Citrus leprosis virus (CiLV-C) often associated with leprosis symptomatic tissues were absent. However, using transmission electron microscopy, bullet-shaped rhabdovirus-like virions were observed in the nuclei and cytoplasm of the citrus leprosis-infected leaf tissues. An analysis of small RNA populations from symptomatic tissue was carried out to determine the genome sequence of the rhabdovirus-like particles observed in the citrus leprosis samples. The complete genome sequence showed that the nuclear type of CiLV (CiLV-N) present in the samples consisted of two negative-sense RNAs: 6,268-nucleotide (nt)-long RNA1 and 5,847-nt-long RNA2, excluding the poly(A) tails. CiLV-N had a genome organization identical to that of Orchid fleck virus (OFV), with the exception of shorter 5' untranslated regions in RNA1 (53 versus 205 nt) and RNA2 (34 versus 182 nt). Phylogenetic trees constructed with the amino acid sequences of the nucleocapsid (N) and glycoproteins (G) and the RNA polymerase (L protein) showed that CiLV-N clusters with OFV. Furthermore, phylogenetic analyses of N protein established CiLV-N as a member of the proposed genus Dichorhavirus. Reverse-transcription polymerase chain reaction primers for the detection of CiLV-N were designed based on the sequence of the N gene and the assay was optimized and tested to detect the presence of CiLV-N in both diseased and symptom-free plants.
Collapse
Affiliation(s)
- Avijit Roy
- First, sixth, seventh, and twelfth authors: University of Florida, IFAS, Plant Pathology Department, Citrus Research and Education Center, 700 Experiment Station Road, Lake Alfred, FL; second and eleventh authors: United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Foreign Disease-Weed Science Research Unit (FDWSRU), Fort Detrick, MD; third and tenth authors: USDA-ARS, Molecular Plant Pathology Laboratory (MPPL), Beltsville, MD; fourth author: Colegio de Postgraduados, Campus Montecillo, Texcoco, Edo. De Mex., CP 56230, México; fifth and ninth authors: USDA-Animal and Plant Health Inspection Service (APHIS)-Plant Protection and Quarantine (PPQ)-Center for Plant Health Science and Technology (CSIRO), Beltsville, MD; and eighth author: USDA-APHIS-PPQ-CPHST, Riverdale, MD
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yan T, Zhu JR, Di D, Gao Q, Zhang Y, Zhang A, Yan C, Miao H, Wang XB. Characterization of the complete genome of Barley yellow striate mosaic virus reveals a nested gene encoding a small hydrophobic protein. Virology 2015; 478:112-22. [PMID: 25666524 DOI: 10.1016/j.virol.2014.12.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 10/24/2022]
Abstract
Barley yellow striate mosaic virus (BYSMV), a member of the genus Cytorhabdovirus, causes serious crop losses in agriculture. Here, we have cloned the BYSMV-derived small interfering RNAs (siRNAs), assembled the siRNAs and used RT-PCR to reconstruct the BYSMV genome. The genome consists of 12,706 nucleotides and encodes ten predicted genes from the antigenomic strand. The major BYSMV structural proteins share identities ranging from 35% to 62% with northern cereal mosaic virus (NCMV) counterparts. A notable difference is that BYSMV contains three transcriptional units residing between the P and M genes compared with four units in the corresponding region of NCMV. Unexpectedly, the middle mRNA in this region encodes gene5 nested in an alternative frame within gene4 via a leaky scanning mechanism. The gene5 encodes a small hydrophobic protein targeting to the endoplasmic reticulum (ER). To our knowledge, this is the first report of nested gene in plant rhabdoviruses.
Collapse
Affiliation(s)
- Teng Yan
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| | - Jing-Rong Zhu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| | - Dianping Di
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 071000, Hebei Province, PR China.
| | - Qiang Gao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| | - Aihong Zhang
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 071000, Hebei Province, PR China.
| | - Chong Yan
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 071000, Hebei Province, PR China.
| | - Hongqin Miao
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 071000, Hebei Province, PR China.
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
11
|
Pappi PG, Dovas CI, Efthimiou KE, Maliogka VI, Katis NI. A novel strategy for the determination of a rhabdovirus genome and its application to sequencing of Eggplant mottled dwarf virus. Virus Genes 2013; 47:105-13. [DOI: 10.1007/s11262-013-0911-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 03/21/2013] [Indexed: 12/17/2022]
|
12
|
Walker PJ, Dietzgen RG, Joubert DA, Blasdell KR. Rhabdovirus accessory genes. Virus Res 2011; 162:110-25. [PMID: 21933691 PMCID: PMC7114375 DOI: 10.1016/j.virusres.2011.09.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/02/2011] [Accepted: 09/04/2011] [Indexed: 12/16/2022]
Abstract
The Rhabdoviridae is one of the most ecologically diverse families of RNA viruses with members infecting a wide range of organisms including placental mammals, marsupials, birds, reptiles, fish, insects and plants. The availability of complete nucleotide sequences for an increasing number of rhabdoviruses has revealed that their ecological diversity is reflected in the diversity and complexity of their genomes. The five canonical rhabdovirus structural protein genes (N, P, M, G and L) that are shared by all rhabdoviruses are overprinted, overlapped and interspersed with a multitude of novel and diverse accessory genes. Although not essential for replication in cell culture, several of these genes have been shown to have roles associated with pathogenesis and apoptosis in animals, and cell-to-cell movement in plants. Others appear to be secreted or have the characteristics of membrane-anchored glycoproteins or viroporins. However, most encode proteins of unknown function that are unrelated to any other known proteins. Understanding the roles of these accessory genes and the strategies by which rhabdoviruses use them to engage, divert and re-direct cellular processes will not only present opportunities to develop new anti-viral therapies but may also reveal aspects of cellar function that have broader significance in biology, agriculture and medicine.
Collapse
Affiliation(s)
- Peter J Walker
- CSIRO Livestock Industries, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC 3220, Australia.
| | | | | | | |
Collapse
|
13
|
Quan PL, Williams DT, Johansen CA, Jain K, Petrosov A, Diviney SM, Tashmukhamedova A, Hutchison SK, Tesh RB, Mackenzie JS, Briese T, Lipkin WI. Genetic characterization of K13965, a strain of Oak Vale virus from Western Australia. Virus Res 2011; 160:206-13. [PMID: 21740935 DOI: 10.1016/j.virusres.2011.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/17/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
Abstract
K13965, an uncharacterized virus, was isolated in 1993 from Anopheles annulipes mosquitoes collected in the Kimberley region of northern Western Australia. Here, we report its genomic sequence, identify it as a rhabdovirus, and characterize its phylogenetic relationships. The genome comprises a P' (C) and SH protein similar to the recently characterized Tupaia and Durham viruses, and shows overlap between G and L genes. Comparison of K13965 genome sequence to other rhabdoviruses identified K13965 as a strain of the unclassified Australian Oak Vale rhabdovirus, whose complete genome sequence we also determined. Phylogenetic analysis of N and L sequences indicated genetic relationship to a recently proposed Sandjima virus clade, although the Oak Vale virus sequences form a branch separate from the African members of that group.
Collapse
Affiliation(s)
- Phenix-Lan Quan
- Center for Infection and Immunity, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gubala A, Davis S, Weir R, Melville L, Cowled C, Boyle D. Tibrogargan and Coastal Plains rhabdoviruses: genomic characterization, evolution of novel genes and seroprevalence in Australian livestock. J Gen Virol 2011; 92:2160-2170. [PMID: 21593274 DOI: 10.1099/vir.0.026120-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tibrogargan virus (TIBV) and Coastal Plains virus (CPV) were isolated from cattle in Australia and TIBV has also been isolated from the biting midge Culicoides brevitarsis. Complete genomic sequencing revealed that the viruses share a novel genome structure within the family Rhabdoviridae, each virus containing two additional putative genes between the matrix protein (M) and glycoprotein (G) genes and one between the G and viral RNA polymerase (L) genes. The predicted novel protein products are highly diverged at the sequence level but demonstrate clear conservation of secondary structure elements, suggesting conservation of biological functions. Phylogenetic analyses showed that TIBV and CPV form an independent group within the 'dimarhabdovirus supergroup'. Although no disease has been observed in association with these viruses, antibodies were detected at high prevalence in cattle and buffalo in northern Australia, indicating the need for disease monitoring and further study of this distinctive group of viruses.
Collapse
Affiliation(s)
- Aneta Gubala
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria, Australia
- Human Protection and Performance Division, Defence Science and Technology Organisation, Melbourne, Australia
- School of Chemistry and Molecular Sciences, University of Queensland, St Lucia, Queensland, Australia
- Australian Biosecurity Cooperative Research Centre for Emerging Infectious Disease, Brisbane, Queensland, Australia
| | - Steven Davis
- Northern Territory Department of Resources, Berrimah Veterinary Laboratories, Berrimah, Northern Territory, Australia
| | - Richard Weir
- Australian Biosecurity Cooperative Research Centre for Emerging Infectious Disease, Brisbane, Queensland, Australia
- Northern Territory Department of Resources, Berrimah Veterinary Laboratories, Berrimah, Northern Territory, Australia
| | - Lorna Melville
- Australian Biosecurity Cooperative Research Centre for Emerging Infectious Disease, Brisbane, Queensland, Australia
- Northern Territory Department of Resources, Berrimah Veterinary Laboratories, Berrimah, Northern Territory, Australia
| | - Chris Cowled
- Australian Biosecurity Cooperative Research Centre for Emerging Infectious Disease, Brisbane, Queensland, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - David Boyle
- Australian Biosecurity Cooperative Research Centre for Emerging Infectious Disease, Brisbane, Queensland, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| |
Collapse
|
15
|
Whitfield AE, Rotenberg D, Aritua V, Hogenhout SA. Analysis of expressed sequence tags from Maize mosaic rhabdovirus-infected gut tissues of Peregrinus maidis reveals the presence of key components of insect innate immunity. INSECT MOLECULAR BIOLOGY 2011; 20:225-242. [PMID: 21199018 DOI: 10.1111/j.1365-2583.2010.01060.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The corn planthopper, Peregrinus maidis, causes direct feeding damage to plants and transmits Maize mosaic rhabdovirus (MMV) in a persistent-propagative manner. MMV must cross several insect tissue layers for successful transmission to occur, and the gut serves as an important barrier for rhabdovirus transmission. In order to facilitate the identification of proteins that may interact with MMV either by facilitating acquisition or responding to virus infection, we generated and analysed the gut transcriptome of P. maidis. From two normalized cDNA libraries, we generated a P. maidis gut transcriptome composed of 20,771 expressed sequence tags (ESTs). Assembly of the sequences yielded 1860 contigs and 14,032 singletons, and biological roles were assigned to 5793 (36%). Comparison of P. maidis ESTs with other insect amino acid sequences revealed that P. maidis shares greatest sequence similarity with another hemipteran, the brown planthopper Nilaparvata lugens. We identified 202 P. maidis transcripts with putative homology to proteins associated with insect innate immunity, including those implicated in the Toll, Imd, JAK/STAT, Jnk and the small-interfering RNA-mediated pathways. Sequence comparisons between our P. maidis gut EST collection and the currently available National Center for Biotechnology Information EST database collection for Ni. lugens revealed that a pathogen recognition receptor in the Imd pathway, peptidoglycan recognition protein-long class (PGRP-LC), is present in these two members of the family Delphacidae; however, these recognition receptors are lacking in the model hemipteran Acyrthosiphon pisum. In addition, we identified sequences in the P. maidis gut transcriptome that share significant amino acid sequence similarities with the rhabdovirus receptor molecule, acetylcholine receptor (AChR), found in other hosts. This EST analysis sheds new light on immune response pathways in hemipteran guts that will be useful for further dissecting innate defence response pathways to rhabdovirus infection.
Collapse
Affiliation(s)
- A E Whitfield
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA.
| | | | | | | |
Collapse
|
16
|
Lamprecht RL, Kasdorf GGF, Stiller M, Staples SM, Nel LH, Pietersen G. Soybean blotchy mosaic virus, a New Cytorhabdovirus Found in South Africa. PLANT DISEASE 2010; 94:1348-1354. [PMID: 30743624 DOI: 10.1094/pdis-09-09-0598] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A previously unidentified plant Rhabdovirus sp. associated with a blotchy mosaic symptom of soybean (Glycine max), prevalent in the lower-lying, warmer soybean production areas of South Africa, was isolated and partially characterized. The virus was shown to be transmitted by mechanical inoculation and at least one species of leafhopper (Peragallia caboverdensis Lindberg (Cicadellidae, Agalliinae)). To determine the morphology and virion size, as well as intercellular accumulation, negative-stained preparations or embedded ultrathin sections of infected plant samples were observed under a transmission electron microscope. The distribution of the virions within the cytoplasm and its bullet-shaped morphology and size (338 to 371 nm by 93 nm) suggested that it is a putative member of the genus Cytorhabdovirus. Degenerate primers designed to a conserved region of the polymerase gene of a number of Rhabdovirus spp. were used in reverse-transcriptase polymerase chain reaction with total RNA from symptomatic plants as template. Amplicons were sequenced and compared with related sequences available on GenBank. The analysis confirmed that the virus was related to Cytorhabdovirus spp., with the highest nucleotide similarity being 60.7% with Northern cereal mosaic virus. The particle morphology, typical virion accumulation in the cytoplasm of infected cells, nucleotide sequence similarity with that of other plant Rhabdovirus spp., and unique symptoms on soybean suggest that the virus is a previously unknown Cytorhabdovirus sp., for which we propose the name Soybean blotchy mosaic virus (SbBMV).
Collapse
Affiliation(s)
- R L Lamprecht
- Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | - G G F Kasdorf
- Agricultural Research Council-Plant Protection Research Institute, Queenswood, 0121, Pretoria, South Africa
| | - M Stiller
- Agricultural Research Council-Plant Protection Research Institute, Queenswood, 0121, Pretoria, South Africa
| | - S M Staples
- Agricultural Research Council-Plant Protection Research Institute, Queenswood, 0121, Pretoria, South Africa
| | - L H Nel
- Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Sciences, University of Pretoria
| | - G Pietersen
- Agricultural Research Council-Plant Protection Research Institute, Queenswood
| |
Collapse
|
17
|
Gubala A, Davis S, Weir R, Melville L, Cowled C, Walker P, Boyle D. Ngaingan virus, a macropod-associated rhabdovirus, contains a second glycoprotein gene and seven novel open reading frames. Virology 2010; 399:98-108. [PMID: 20089287 DOI: 10.1016/j.virol.2009.12.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 11/16/2009] [Accepted: 12/14/2009] [Indexed: 11/30/2022]
Abstract
Ngaingan virus (NGAV) was isolated from a pool of biting midges that were collected in the tropics of northern Australia. Reported here is the full-length sequence of the NGAV genome, which, at over 15.7 kb, is the largest in any rhabdovirus described to date and contains 13 genes, the highest number of genes observed in any (-) ssRNA virus. Seven of these putative genes show no significant homology to known proteins. Like viruses in the genus Ephemerovirus, NGAV possesses a second glycoprotein gene (G(NS)). Phylogenetic analyses, however, place NGAV within the yet to be classified "Hart Park" group containing Wongabel and Flanders viruses, which do not contain a second glycoprotein gene. Screening of various animal sera from northern Australia has indicated that NGAV is currently circulating in macropods (wallabies, wallaroos and kangaroos), highlighting the need for further studies to determine its potential to cause disease in these species.
Collapse
Affiliation(s)
- Aneta Gubala
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria, Australia; School of Chemistry and Molecular Sciences, University of Queensland, St. Lucia, Queensland, Australia; Human Protection and Performance Division, Defence Science and Technology Organisation, Melbourne, Australia; Australian Biosecurity Cooperative Research Centre for Emerging Infectious Disease, Brisbane, Queensland, Australia.
| | - Steven Davis
- Northern Territory Department of Regional Development, Primary Industry, Fisheries and Resources, Berrimah Veterinary Laboratories, Berrimah, Northern Territory, Australia
| | - Richard Weir
- Northern Territory Department of Regional Development, Primary Industry, Fisheries and Resources, Berrimah Veterinary Laboratories, Berrimah, Northern Territory, Australia; Australian Biosecurity Cooperative Research Centre for Emerging Infectious Disease, Brisbane, Queensland, Australia
| | - Lorna Melville
- Northern Territory Department of Regional Development, Primary Industry, Fisheries and Resources, Berrimah Veterinary Laboratories, Berrimah, Northern Territory, Australia; Australian Biosecurity Cooperative Research Centre for Emerging Infectious Disease, Brisbane, Queensland, Australia
| | - Chris Cowled
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria, Australia; Australian Biosecurity Cooperative Research Centre for Emerging Infectious Disease, Brisbane, Queensland, Australia
| | - Peter Walker
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - David Boyle
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria, Australia; Australian Biosecurity Cooperative Research Centre for Emerging Infectious Disease, Brisbane, Queensland, Australia
| |
Collapse
|
18
|
Ammar ED, Tsai CW, Whitfield AE, Redinbaugh MG, Hogenhout SA. Cellular and molecular aspects of rhabdovirus interactions with insect and plant hosts. ANNUAL REVIEW OF ENTOMOLOGY 2009; 54:447-68. [PMID: 18793103 DOI: 10.1146/annurev.ento.54.110807.090454] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The rhabdoviruses form a large family (Rhabdoviridae) whose host ranges include humans, other vertebrates, invertebrates, and plants. There are at least 90 plant-infecting rhabdoviruses, several of which are economically important pathogens of various crops. All definitive plant-infecting and many vertebrate-infecting rhabdoviruses are persistently transmitted by insect vectors, and a few putative plant rhabdoviruses are transmitted by mites. Plant rhabdoviruses replicate in their plant and arthropod hosts, and transmission by vectors is highly specific, with each virus species transmitted by one or a few related insect species, mainly aphids, leafhoppers, or planthoppers. Here, we provide an overview of plant rhabdovirus interactions with their insect hosts and of how these interactions compare with those of vertebrate-infecting viruses and with the Sigma rhabdovirus that infects Drosophila flies. We focus on cellular and molecular aspects of vector/host specificity, transmission barriers, and virus receptors in the vectors. In addition, we briefly discuss recent advances in understanding rhabdovirus-plant interactions.
Collapse
Affiliation(s)
- El-Desouky Ammar
- Department of Entomology, The Ohio State University-OARDC, Wooster, Ohio 44691, USA.
| | | | | | | | | |
Collapse
|
19
|
Ghosh D, Brooks RE, Wang R, Lesnaw J, Goodin MM. Cloning and subcellular localization of the phosphoprotein and nucleocapsid proteins of Potato yellow dwarf virus, type species of the genus Nucleorhabdovirus. Virus Res 2008; 135:26-35. [PMID: 18387687 DOI: 10.1016/j.virusres.2008.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 02/07/2008] [Accepted: 02/10/2008] [Indexed: 11/15/2022]
Abstract
We have cloned and characterized mRNAs corresponding to the phosphoprotein (P) and nucleocapsid (N) genes of the sanguinolenta strain of Potato yellow dwarf virus (PYDV). The P and N messenger RNAs both begin with a common AAACA pentanucleotide and are 1546nt and 962nt in length, and capable of encoding 52kDa and 31kDa proteins, respectively. The N mRNA contains a 12nt 5' non-translated sequence (NTS) and a 83nt 3'-NTS. Similarly, the P mRNA has a 19nt 5'-NTS and a 125nt 3'-NTS. Primary structure analyses revealed three potential phosphorylation sites in the P protein and six in the N protein. Despite a lack of predictable nuclear localization signals (NLSs) in either protein, transient expression of the P and N proteins in N. benthamiana showed that both proteins are targeted exclusively to nuclei. Phylogenetic analyses showed that PYDV is most closely related to Maize mosaic virus and Taro vein chlorosis virus, which also lack predictable NLSs in their N proteins. The present data further distinguish PYDV from SYNV and suggest that, together, these viruses serve to provide a more comprehensive view of rhabdovirus cell biology, which can be studied in a common host plant.
Collapse
Affiliation(s)
- Debasish Ghosh
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States
| | | | | | | | | |
Collapse
|
20
|
Kuzmin IV, Wu X, Tordo N, Rupprecht CE. Complete genomes of Aravan, Khujand, Irkut and West Caucasian bat viruses, with special attention to the polymerase gene and non-coding regions. Virus Res 2008; 136:81-90. [PMID: 18514350 DOI: 10.1016/j.virusres.2008.04.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/05/2008] [Accepted: 04/22/2008] [Indexed: 11/15/2022]
Abstract
The purpose of this study was to generate complete genome sequences of Aravan (ARAV), Khujand (KHUV), Irkut (IRKV) and West Caucasian bat (WCBV) viruses, and to compare them with genomes of other lyssaviruses. We focused on RNA-dependent RNA-polymerase (L) and non-coding regions, because other genes of these viruses have been described previously. The L protein is organized into six conserved blocks (I-VI), previously detected in all Mononegavirales. Furthermore, lyssaviruses have two additional conserved regions, L1 and L2, located in the COOH part of the L. L1 may be responsible for methylation of viral mRNA cap structures, whereas the significance of L2 is unclear. Phylogenetic patterns based on the L are similar to those described for the nucleoprotein. The WCBV is the most divergent member of the genus. Besides phylogeny, it has a short trailer region (57 nucleotides versus 69-70 nucleotides in other lyssaviruses) and different intergenic region lengths, including an exceptionally long non-coding region of the glycoprotein (697 nucleotides) containing a potential open reading frame of 180 nucleotides. The absence of a flanking transcription initiation signal, as well as Northern and Western blot data, suggests that this region is not independently transcribed but is a part of G mRNA.
Collapse
Affiliation(s)
- Ivan V Kuzmin
- Rabies Program, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-33 Atlanta, GA 30333, USA.
| | | | | | | |
Collapse
|
21
|
Massah A, Izadpanah K, Afsharifar AR, Winter S. Analysis of nucleotide sequence of Iranian maize mosaic virus confirms its identity as a distinct nucleorhabdovirus. Arch Virol 2008; 153:1041-7. [PMID: 18449468 DOI: 10.1007/s00705-008-0085-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 02/27/2008] [Indexed: 11/25/2022]
Abstract
The nucleotide sequence of the Iranian maize mosaic rhabdovirus (IMMV) was obtained using a random-PCR method (rPCR) followed by PCR with specific primers. Analysis of the complete nucleotide sequence of the IMMV genes and intergenic regions comprising a total of 12,381 nucleotides (including the partial sequences of leader and trailer regions) revealed six open reading frames (ORF) on the viral complementary RNA (vcRNA). On the basis of its similarities to other rhabdovirus sequences, the IMMV genome consists of 3'-leader-N-P-3-M-G-L-5'-trailer. The intergenic regions contained a characteristic consensus sequence, 3'-AAUUCUUUUUGGGUUU/G-5'. The IMMV gene products showed a high similarity to those of maize mosaic virus and taro vein chlorosis virus and a more distant relationship to other rhabdoviruses. Together with the biological, serological and morphological features described earlier, our molecular data provide evidence that IMMV is a distinct member of the genus Nucleorhabdovirus in the family Rhabdoviridae.
Collapse
Affiliation(s)
- A Massah
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz, Iran
| | | | | | | |
Collapse
|
22
|
Genomic characterisation of Wongabel virus reveals novel genes within the Rhabdoviridae. Virology 2008; 376:13-23. [PMID: 18436275 DOI: 10.1016/j.virol.2008.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 10/17/2007] [Accepted: 03/10/2008] [Indexed: 11/21/2022]
Abstract
Viruses belonging to the family Rhabdoviridae infect a variety of different hosts, including insects, vertebrates and plants. Currently, there are approximately 200 ICTV-recognised rhabdoviruses isolated around the world. However, the majority remain poorly characterised and only a fraction have been definitively assigned to genera. The genomic and transcriptional complexity displayed by several of the characterised rhabdoviruses indicates large diversity and complexity within this family. To enable an improved taxonomic understanding of this family, it is necessary to gain further information about the poorly characterised members of this family. Here we present the complete genome sequence and predicted transcription strategy of Wongabel virus (WONV), a previously uncharacterised rhabdovirus isolated from biting midges (Culicoides austropalpalis) collected in northern Queensland, Australia. The 13,196 nucleotide genome of WONV encodes five typical rhabdovirus genes N, P, M, G and L. In addition, the WONV genome contains three genes located between the P and M genes (U1, U2, U3) and two open reading frames overlapping with the N and G genes (U4, U5). These five additional genes and their putative protein products appear to be novel, and their functions are unknown. Predictive analysis of the U5 gene product revealed characteristics typical of viroporins, and indicated structural similarities with the alpha-1 protein (putative viroporin) of viruses in the genus Ephemerovirus. Phylogenetic analyses of the N and G proteins of WONV indicated closest similarity with the avian-associated Flanders virus; however, the genomes of these two viruses are significantly diverged. WONV displays a novel and unique genome structure that has not previously been described for any animal rhabdovirus.
Collapse
|
23
|
A neurotropic route for Maize mosaic virus (Rhabdoviridae) in its planthopper vector Peregrinus maidis. Virus Res 2008; 131:77-85. [DOI: 10.1016/j.virusres.2007.08.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 08/23/2007] [Accepted: 08/23/2007] [Indexed: 11/17/2022]
|
24
|
Hogenhout SA, Ammar ED, Whitfield AE, Redinbaugh MG. Insect vector interactions with persistently transmitted viruses. ANNUAL REVIEW OF PHYTOPATHOLOGY 2008; 46:327-59. [PMID: 18680428 DOI: 10.1146/annurev.phyto.022508.092135] [Citation(s) in RCA: 619] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The majority of described plant viruses are transmitted by insects of the Hemipteroid assemblage that includes aphids, whiteflies, leafhoppers, planthoppers, and thrips. In this review we highlight progress made in research on vector interactions of the more than 200 plant viruses that are transmitted by hemipteroid insects beginning a few hours or days after acquisition and for up to the life of the insect, i.e., in a persistent-circulative or persistent-propagative mode. These plant viruses move through the insect vector, from the gut lumen into the hemolymph or other tissues and finally into the salivary glands, from which these viruses are introduced back into the plant host during insect feeding. The movement and/or replication of the viruses in the insect vectors require specific interactions between virus and vector components. Recent investigations have resulted in a better understanding of the replication sites and tissue tropism of several plant viruses that propagate in insect vectors. Furthermore, virus and insect proteins involved in overcoming transmission barriers in the vector have been identified for some virus-vector combinations.
Collapse
Affiliation(s)
- Saskia A Hogenhout
- Department of Disease and Stress Biology, John Innes Centre, Norwich, NR4 7UH, United Kingdom.
| | | | | | | |
Collapse
|
25
|
Heim F, Lot H, Delecolle B, Bassler A, Krczal G, Wetzel T. Complete nucleotide sequence of a putative new cytorhabdovirus infecting lettuce. Arch Virol 2007; 153:81-92. [PMID: 17943394 DOI: 10.1007/s00705-007-1071-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
Abstract
The full-length nucleotide sequence of the genomic RNA of a new cytorhabdovirus infecting lettuce was determined. Six open reading frames were found in the antigenomic sequence of the 12,926-nt negative-sense viral RNA genome. The genomic organisation was similar to that of lettuce necrotic yellows virus (LNYV), the type member of the genus Cytorhabdovirus: 3'-N-P-3-M-G-L-5', where N is the capsid protein gene, P the putative phosphoprotein gene, 3 a gene coding for a putative protein of unknown function, M the putative matrix protein gene, G the glycoprotein gene, and L the putative polymerase gene. Amino acid sequence comparison with the corresponding sequences of other rhabdoviruses revealed the closest relationship to LNYV, with identities ranging from 41% for the matrix proteins and 65% for the L polymerase proteins. These results indicate that this virus may be a member of a new cytorhabdovirus species, for which the name Lettuce yellow mottle virus (LYMoV) is proposed.
Collapse
Affiliation(s)
- F Heim
- RLP Agroscience, AlPlanta - Institute for Plant Research, Neustadt an der Weinstrasse, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Emonet SF, Grard G, Brisbarre NM, Moureau GN, Temmam S, Charrel RN, de Lamballerie X. Long PCR Product Sequencing (LoPPS): a shotgun-based approach to sequence long PCR products. Nat Protoc 2007; 2:340-6. [PMID: 17406595 DOI: 10.1038/nprot.2006.453] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Here we describe a practical procedure for sequencing long PCR products. The method relies on ultrasonic shearing of PCR products, resulting in fragments 700-1,000 nt long. Termini are subsequently repaired to obtain blunt ends and 3' A-overhangs are added before TA cloning. A predetermined number of clones are sequenced using an insert-independent primer to obtain an overlapping contig covering the full length of the PCR product. This method is cost effective and enables the complete sequencing of any large PCR product in a high-throughput format. Processing of amplified DNA requires 3 h handling time prior to the ligation step, and the clone library is available 2 d later. The complete sequence information is obtained approximately 5 d after the PCR step, depending on the sequencing procedure adopted.
Collapse
Affiliation(s)
- Sébastien F Emonet
- Unité des Virus Emergents (EA3292, IFR48, IRD UR034), Faculté de Médecine, 27 boulevard Jean Moulin, 13005 Marseille, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Goodin MM, Chakrabarty R, Yelton S, Martin K, Clark A, Brooks R. Membrane and protein dynamics in live plant nuclei infected with Sonchus yellow net virus, a plant-adapted rhabdovirus. J Gen Virol 2007; 88:1810-1820. [PMID: 17485543 DOI: 10.1099/vir.0.82698-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sonchus yellow net virus (SYNV) serves as the paradigm for the cell biology of plant-adapted rhabdoviruses. Fluorescence recovery after photobleaching (FRAP) demonstrated that SYNV-induced intranuclear membranes are contiguous with the endomembrane system. Fluorescence intensity measurements of a green fluorescent protein-tagged nuclear envelope marker were consistent with electron microscopy studies, which suggest that infection by SYNV results in invagination of the inner nuclear membrane. Fusions of a red fluorescent protein to five SYNV-encoded proteins were used to determine the relationship between virus-induced intranuclear membranes and the localization of viral proteins. These data establish definitively that localization in the context of infected cells provides a superior means to predict protein function compared with localization studies conducted in mock-inoculated cells. Substructure has been identified within the viroplasm, the putative site of virus replication, which suggests that the nucleocapsid (N) protein occupies a region at the junction between the viroplasm and intranuclear membranes that largely excludes the phosphoprotein. Within virus-infected nuclei, the SYNV matrix (M) protein and glycoprotein (G) were associated predominantly with membranes, whereas sc4, the predicted movement protein, accumulated primarily at punctate loci on the periphery of cells. Coexpression of differently tagged SYNV protein fusions in combination with FRAP analyses suggest a model whereby the replication and morphogenesis of SYNV are spatially separated events. Finally, an M protein-containing complex was discovered that appears to bud from the nucleus and that moves on ER membranes. Taken together, these data represent the most comprehensive analyses of rhabdoviral protein localization conducted in the context of infected cells.
Collapse
Affiliation(s)
- Michael M Goodin
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Romit Chakrabarty
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Sharon Yelton
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Kathleen Martin
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Anthony Clark
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Robert Brooks
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
28
|
Kondo H, Maeda T, Shirako Y, Tamada T. Orchid fleck virus is a rhabdovirus with an unusual bipartite genome. J Gen Virol 2006; 87:2413-2421. [PMID: 16847138 DOI: 10.1099/vir.0.81811-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Orchid fleck virus (OFV) has an unusual bipartite negative-sense RNA genome with clear sequence similarities to those of nucleorhabdoviruses. The OFV genome consists of two single-stranded RNA molecules, RNA1 and RNA2 that are 6413 and 6001 nt long, respectively, with open reading frame (ORF) information in the complementary sense. RNA1 encodes 49 (ORF1), 26 (ORF2), 38 (ORF3), 20 (ORF4) and 61 kDa (ORF5) proteins, and RNA2 encodes a single protein of 212 kDa (ORF6). ORF1, ORF5 and ORF6 proteins had significant similarities (21–38 % identity) to the nucleocapsid protein (N), glycoprotein (G) and polymerase (L) gene products, respectively, of other rhabdoviruses, especially nucleorhabdoviruses, whereas ORF2, ORF3 and ORF4 proteins had no significant similarities to other proteins in the international databases. Similarities between OFV and rhabdoviruses were also found in the sequence complementarity at both termini of each RNA segment (the common terminal sequences are 3′-UGUGUC---GACACA-5′), the conserved intergenic sequences and in being negative sense. It was proposed that a new genus Dichorhabdovirus in the family Rhabdoviridae of the order Mononegavirales should be established with OFV as its prototype member and type species.
Collapse
Affiliation(s)
- Hideki Kondo
- Research Institute for Bioresources, Okayama University, Kurashiki 710-0046, Japan
| | - Takanori Maeda
- Research Institute for Bioresources, Okayama University, Kurashiki 710-0046, Japan
| | - Yukio Shirako
- Asian Center for Bioresources and Environmental Sciences, University of Tokyo, Tokyo 113-0032 Japan
| | - Tetsuo Tamada
- Research Institute for Bioresources, Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|
29
|
Emonet S, Grard G, Brisbarre N, Moureau G, Temmam S, Charrel R, de Lamballerie X. LoPPS: a long PCR product sequencing method for rapid characterisation of long amplicons. Biochem Biophys Res Commun 2006; 344:1080-5. [PMID: 16643852 DOI: 10.1016/j.bbrc.2006.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 04/01/2006] [Indexed: 11/25/2022]
Abstract
Here, we propose an optimised protocol (LoPPS, long PCR product sequencing) which allows the fast, cost-attractive, and high-throughput sequencing of long PCR products. LoPPS constitutes an alternative to the primer-walking technology which is expensive and time consuming but remains the current standard procedure. It is based on the ultrasonic shearing, polishing, and cloning of PCR or RT-PCR products and is compatible with 96- or 384-well microplate systems in which bacterial growth, preparation of plasmid DNA, and sequencing can be automated. We present results obtained from 24 different RT-PCR products (2.5-4.8 kbp long) obtained from various RNA viruses and fully sequenced using LoPPS. The method proved to be robust and fast. It was successfully used on a low amount of DNA and allowed each target nucleotide position to be controlled twice or more, with a final cost which is one-third of that of primer-walking.
Collapse
Affiliation(s)
- Sébastien Emonet
- Unité des Virus Emergents (EA3292, IFR48, IRD UR034), Faculté de Médecine, 27 boulevard Jean Moulin, 13005 Marseille, France
| | | | | | | | | | | | | |
Collapse
|