Deo VK, Yui M, Alam J, Yamazaki M, Kato T, Park EY. A model for targeting colon carcinoma cells using single-chain variable fragments anchored on virus-like particles via glycosyl phosphatidylinositol anchor.
Pharm Res 2014;
31:2166-77. [PMID:
24570130 DOI:
10.1007/s11095-014-1316-4]
[Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 01/28/2014] [Indexed: 12/22/2022]
Abstract
PURPOSE
VLPs displaying tumor targeting single-chain variable fragments (VLP-rscFvs) which targets tumor-associated glycoprotein-72 (TAG-72) marker protein have a potential for immunotherapy against colon carcinoma tumors. In this study, scFvs anchored on VLPs using glycosylphosphatidylinositol (GPI) were prepared to target colon carcinoma spheroids in vitro.
METHODS
VLPs-rscFvs were produced by co-injecting two types of Bombyx mori nucleopolyhedrovirus (BmNPV) bacmids, encoding RSV-gag and rscFvs cDNA into silkworm larvae. Large unilamellar vesicles (LUVs) of 100 nm in diameter were made using 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and packaged with Sulforhodamine B (SRB). LUV-SRB was used to associate with VLP-rscFvs assisted by GP64 present on VLP-rscFvs to produce VLP-rscFv associated SRB (VLP-rscFvs-SRB) at pH 7.5.
RESULTS
The antigenicity of the purified VLPs-rScFvs was confirmed by enzyme-linked immunosorbent assay (ELISA) using TAG-72 as antigen. LUV-SRB made of DOPC was used to associate with 100 μg of VLP-rscFvs to produce VLP-rscFv-SRB. Specific delivery and penetration of SRB up to 100 μm into the spheroids shows the potential of the new model.
CONCLUSIONS
The current study demonstrated the display, expression and purification of VLP-rscFvs efficiently. As a test model VLP-rscFv-SRB were prepared which can be used for immunotherapy. rscFvs provide the specificity needed to target tumors and VLPs serve as carrier transporting the dye to target.
Collapse