1
|
Choi S, Lee K, Jung H, Park N, Kang J, Nam KH, Kim EK, Ju JH, Kang KY. Kruppel-Like Factor 4 Positively Regulates Autoimmune Arthritis in Mouse Models and Rheumatoid Arthritis in Patients via Modulating Cell Survival and Inflammation Factors of Fibroblast-Like Synoviocyte. Front Immunol 2018; 9:1339. [PMID: 29997611 PMCID: PMC6030377 DOI: 10.3389/fimmu.2018.01339] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/29/2018] [Indexed: 01/23/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes mild to severe joint inflammation. During RA pathogenesis, fibroblast-like synoviocytes (FLS) acquire a tumor-like phenotype and mediate cartilage destruction both directly and indirectly by producing proinflammatory cytokines and matrix metalloproteinases (MMPs). Kruppel-like factor (KLF) 4, a member of the KLF family, plays significant roles in cell survival, proliferation, and differentiation. A recent study reported increased expression of KLF4 in synovial tissue from RA patients. However, its precise role in RA in different models, including mouse autoimmune disease models, remains unclear. In this study, we examined the role of KLF4 during development of autoimmune arthritis in mouse models. To do this, we used KLF4 knockout mice rendered by ribonucleic acid (RNA)-guided endonuclease (RGEN) and performed collagen antibody-induced arthritis (CAIA). We found that deletion of KLF4 reduces inflammation induced by CAIA. In addition, we assessed collagen-induced arthritis (CIA) in control mice and KLF4-overexpressing mice generated by a minicircle vector treatment. Severity of CIA in mice overexpressing KLF4 was greater than that in mice injected with control vector. Finally, we verified the inflammatory roles of KLF4 in CIA by treating Kenpaullone which is used as KLF4 inhibitor. Next, we focused on human/mouse FLS to discover the cellular process involved in RA pathogenesis including proliferation, apoptosis, and inflammation including MMPs. In FLS, KLF4 upregulated expression of mRNA encoding proinflammatory cytokines interleukin (IL)-1β and IL-6. KLF4 also regulated expression of matrix metallopeptidase 13 in the synovium. We found that blockade of KLF4 in FLS increased apoptosis and suppressed proliferation followed by downregulation of antiapoptotic factor BCL2. Our results indicate that KLF4 plays a crucial role in pathogenesis of inflammatory arthritis in vivo, by regulating apoptosis, MMP expression, and cytokine expression by FLS. Thus, KLF4 might be a novel transcription factor for generating RA by modulating cellular process of FLS.
Collapse
Affiliation(s)
- Seungjin Choi
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
- Department of Cancer Biomedical Science, Research Institute, National Cancer Center, Goyang, South Korea
| | - Kijun Lee
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyerin Jung
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Narae Park
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jaewoo Kang
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Cheongju, South Korea
| | - Eun-Kyeong Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Cheongju, South Korea
| | - Ji Hyeon Ju
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kwi Young Kang
- Division of Rheumatology, Department of Internal Medicine, Incheon St. Mary’s Hospital, The Catholic University of Korea, Incheon, South Korea
| |
Collapse
|
2
|
Neely MD, Litt MJ, Tidball AM, Li GG, Aboud AA, Hopkins CR, Chamberlin R, Hong CC, Ess KC, Bowman AB. DMH1, a highly selective small molecule BMP inhibitor promotes neurogenesis of hiPSCs: comparison of PAX6 and SOX1 expression during neural induction. ACS Chem Neurosci 2012; 3:482-91. [PMID: 22860217 DOI: 10.1021/cn300029t] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 03/05/2012] [Indexed: 12/25/2022] Open
Abstract
Recent successes in deriving human-induced pluripotent stem cells (hiPSCs) allow for the possibility of studying human neurons derived from patients with neurological diseases. Concomitant inhibition of the BMP and TGF-β1 branches of the TGF-β signaling pathways by the endogenous antagonist, Noggin, and the small molecule SB431542, respectively, induces efficient neuralization of hiPSCs, a method known as dual-SMAD inhibition. The use of small molecule inhibitors instead of their endogenous counterparts has several advantages including lower cost, consistent activity, and the maintenance of xeno-free culture conditions. We tested the efficacy of DMH1, a highly selective small molecule BMP-inhibitor for its potential to replace Noggin in the neuralization of hiPSCs. We compare Noggin and DMH1-induced neuralization of hiPSCs by measuring protein and mRNA levels of pluripotency and neural precursor markers over a period of seven days. The regulation of five of the six markers assessed was indistinguishable in the presence of concentrations of Noggin or DMH1 that have been shown to effectively inhibit BMP signaling in other systems. We observed that by varying the DMH1 or Noggin concentration, we could selectively modulate the number of SOX1 expressing cells, whereas PAX6, another neural precursor marker, remained the same. The level and timing of SOX1 expression have been shown to affect neural induction as well as neural lineage. Our observations, therefore, suggest that BMP-inhibitor concentrations need to be carefully monitored to ensure appropriate expression levels of all transcription factors necessary for the induction of a particular neuronal lineage. We further demonstrate that DMH1-induced neural progenitors can be differentiated into β3-tubulin expressing neurons, a subset of which also express tyrosine hydroxylase. Thus, the combined use of DMH1, a highly specific BMP-pathway inhibitor, and SB431542, a TGF-β1-pathway specific inhibitor, provides us with the tools to independently regulate these two pathways through the exclusive use of small molecule inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Reed Chamberlin
- Genetics Associates Inc., Nashville, Tennessee 37203, United States
| | | | | | | |
Collapse
|
3
|
Torres R, García A, Payá M, Ramirez JC. Non-integrative lentivirus drives high-frequency cre-mediated cassette exchange in human cells. PLoS One 2011; 6:e19794. [PMID: 21625434 PMCID: PMC3100306 DOI: 10.1371/journal.pone.0019794] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 04/05/2011] [Indexed: 12/21/2022] Open
Abstract
Recombinase mediated cassette exchange (RMCE) is a two-step process leading to genetic modification in a specific genomic target sequence. The process involves insertion of a docking genetic cassette in the genome followed by DNA transfer of a second cassette flanked by compatible recombination signals and expression of the recombinase. Major technical drawbacks are cell viability upon transfection, toxicity of the enzyme, and the ability to target efficiently cell types of different origins. To overcome such drawbacks, we developed an RMCE assay that uses an integrase-deficient lentivirus (IDLV) vector in the second step combined with promoterless trapping of double selectable markers. Additionally, recombinase expression is self-limiting as a result of the exchangeable reaction, thus avoiding toxicity. Our approach provides proof-of-principle of a simple and novel strategy with expected wide applicability modelled on a human cell line with randomly integrated copies of a genetic landing pad. This strategy does not present foreseeable limitations for application to other cell systems modified by homologous recombination. Safety, efficiency, and simplicity are the major advantages of our system, which can be applied in low-to-medium throughput strategies for screening of cDNAs, non-coding RNAs during functional genomic studies, and drug screening.
Collapse
Affiliation(s)
- Raul Torres
- Viral Vector Technical Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Aida García
- Viral Vector Technical Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Monica Payá
- Viral Vector Technical Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Juan C. Ramirez
- Viral Vector Technical Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
4
|
Yang S, Brindley PJ, Zeng Q, Li Y, Zhou J, Liu Y, Liu B, Cai L, Zeng T, Wei Q, Lan L, McManus DP. Transduction of Schistosoma japonicum schistosomules with vesicular stomatitis virus glycoprotein pseudotyped murine leukemia retrovirus and expression of reporter human telomerase reverse transcriptase in the transgenic schistosomes. Mol Biochem Parasitol 2010; 174:109-16. [PMID: 20692298 PMCID: PMC3836731 DOI: 10.1016/j.molbiopara.2010.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 07/25/2010] [Accepted: 07/28/2010] [Indexed: 01/21/2023]
Abstract
Although draft genome sequences of two of the major human schistosomes, Schistosoma japonicum and Schistosoma mansoni are available, the structures and characteristics of most genes and the influence of exogenous genes on the metabolism of schistosomes remain uncharacterized. Furthermore, which functional genomics approaches will be tractable for schistosomes are not yet apparent. Here, the vesicular stomatitis virus glycoprotein (VSVG)-pseudotyped pantropic retroviral vector pBABE-puro was modified to incorporate the human telomerase reverse transcriptase gene (hTERT) as a reporter, under the control of the retroviral long terminal repeat (LTR). Pseudotyped virions were employed to transduce S. japonicum to investigate the utility of retrovirus-mediated transgenesis of S. japonicum and the activity of human telomerase reverse transcriptase as a reporter transgene in schistosomes. Schistosomules perfused from experimentally infected rabbits were cultured for 6 days after exposure to the virions after which genomic DNAs from virus exposed and control worms were extracted. Analysis of RNA from transduced parasites and immunohistochemistry of thin parasite sections revealed expression of hTERT in the transduced worms. Expression of hTERT was also confirmed by immunoblot analysis. These findings indicated that S. japonicum could be effectively transduced by VSVG-pseudotyped retrovirus carrying the hTERT gene. Given the potential of hTERT to aid in derivation of immortalized cells, these findings suggest that this pantropic retroviral approach can be employed to transduce cells from specific tissues and organs of schistosomes to investigate the influence of transgene hTERT on growth and proliferation of schistosome cells.
Collapse
Affiliation(s)
- Shenghui Yang
- Centre of Cell and Molecular Biology Experiment, Xiangya School of Medicine, Central South University, Changsha, Hunan province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lee JA, Lee KM, Lee HJ, Lee YJ, Kim DH, Lim JS, Park KD. The optimal conditions to improve retrovirus-mediated transduction efficiency to NIH 3T3 cells. KOREAN JOURNAL OF PEDIATRICS 2007. [DOI: 10.3345/kjp.2007.50.10.1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jun Ah Lee
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul, Korea
| | - Kang-Min Lee
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul, Korea
| | - Hyun Jae Lee
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul, Korea
| | - Yun Jeong Lee
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul, Korea
| | - Dong Ho Kim
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul, Korea
| | - Jung Sub Lim
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul, Korea
| | - Kyung-Duk Park
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul, Korea
| |
Collapse
|