1
|
Baldi P, La Porta N. Molecular Approaches for Low-Cost Point-of-Care Pathogen Detection in Agriculture and Forestry. FRONTIERS IN PLANT SCIENCE 2020; 11:570862. [PMID: 33193502 PMCID: PMC7655913 DOI: 10.3389/fpls.2020.570862] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/29/2020] [Indexed: 05/14/2023]
Abstract
Early detection of plant diseases is a crucial factor to prevent or limit the spread of a rising infection that could cause significant economic loss. Detection test on plant diseases in the laboratory can be laborious, time consuming, expensive, and normally requires specific technical expertise. Moreover, in the developing countries, it is often difficult to find laboratories equipped for this kind of analysis. Therefore, in the past years, a high effort has been made for the development of fast, specific, sensitive, and cost-effective tests that can be successfully used in plant pathology directly in the field by low-specialized personnel using minimal equipment. Nucleic acid-based methods have proven to be a good choice for the development of detection tools in several fields, such as human/animal health, food safety, and water analysis, and their application in plant pathogen detection is becoming more and more common. In the present review, the more recent nucleic acid-based protocols for point-of-care (POC) plant pathogen detection and identification are described and analyzed. All these methods have a high potential for early detection of destructive diseases in agriculture and forestry, they should help make molecular detection for plant pathogens accessible to anyone, anywhere, and at any time. We do not suggest that on-site methods should replace lab testing completely, which remains crucial for more complex researches, such as identification and classification of new pathogens or the study of plant defense mechanisms. Instead, POC analysis can provide a useful, fast, and efficient preliminary on-site screening that is crucial in the struggle against plant pathogens.
Collapse
Affiliation(s)
- Paolo Baldi
- IASMA Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
- *Correspondence: Paolo Baldi,
| | - Nicola La Porta
- IASMA Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
- The EFI Project Centre on Mountain Forests (MOUNTFOR), San Michele a/Adige, Trento, Italy
| |
Collapse
|
2
|
Kunadiya MB, Dunstan WD, White D, Hardy GESJ, Grigg AH, Burgess TI. A qPCR Assay for the Detection of Phytophthora cinnamomi Including an mRNA Protocol Designed to Establish Propagule Viability in Environmental Samples. PLANT DISEASE 2019; 103:2443-2450. [PMID: 31313641 DOI: 10.1094/pdis-09-18-1641-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phytophthora cinnamomi causes root and collar rot in many plant species in natural ecosystems and horticulture. A species-specific primer and probe PCIN5 were designed based on a mitochondrial locus encoding subunit 2 of cytochrome c oxidase (cox2). Eight PCR primers, including three forward and five reverse, were designed and tested in all possible combinations. Annealing temperatures were optimized for each primer pair set to maximize both specificity and sensitivity. Each set was tested against P. cinnamomi and two closely related clade 7 species, P. parvispora and P. niederhauseri. From these tests, five primer pairs were selected based on specificity and, with a species-specific P. cinnamomi probe, used to develop quantitative real-time PCR (qPCR) assays. The specificity of the two most sensitive qPCR assays was confirmed using the genomic DNA of 29 Phytophthora isolates, including 17 isolates of 11 species from clade 7, and representative species from nine other clades (all except clade 3). The assay was able to detect as little as 150 ag of P. cinnamomi DNA and showed no cross-reaction with other Phytophthora species, except for P. parvispora, a very closely related species to P. cinnamomi, which showed late amplification at high DNA concentrations. The efficiency of the qPCR protocol was evaluated with environmental samples including roots and associated soil from plants artificially infected with P. cinnamomi. Different RNA isolation kits were tested and evaluated for their performance in the isolation of RNA from environmental samples, followed by cDNA synthesis, and qPCR assay. Finally, a protocol was recommended for determining the presence of P. cinnamomi in recalcitrant environmental samples.
Collapse
Affiliation(s)
- Manisha B Kunadiya
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - William D Dunstan
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Diane White
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Giles E St J Hardy
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Andrew H Grigg
- Alcoa of Australia Ltd., Huntly Mine, Pinjarra, WA 6208, Australia
| | - Treena I Burgess
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
3
|
Lau HY, Botella JR. Advanced DNA-Based Point-of-Care Diagnostic Methods for Plant Diseases Detection. FRONTIERS IN PLANT SCIENCE 2017; 8:2016. [PMID: 29375588 PMCID: PMC5770625 DOI: 10.3389/fpls.2017.02016] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/13/2017] [Indexed: 05/07/2023]
Abstract
Diagnostic technologies for the detection of plant pathogens with point-of-care capability and high multiplexing ability are an essential tool in the fight to reduce the large agricultural production losses caused by plant diseases. The main desirable characteristics for such diagnostic assays are high specificity, sensitivity, reproducibility, quickness, cost efficiency and high-throughput multiplex detection capability. This article describes and discusses various DNA-based point-of care diagnostic methods for applications in plant disease detection. Polymerase chain reaction (PCR) is the most common DNA amplification technology used for detecting various plant and animal pathogens. However, subsequent to PCR based assays, several types of nucleic acid amplification technologies have been developed to achieve higher sensitivity, rapid detection as well as suitable for field applications such as loop-mediated isothermal amplification, helicase-dependent amplification, rolling circle amplification, recombinase polymerase amplification, and molecular inversion probe. The principle behind these technologies has been thoroughly discussed in several review papers; herein we emphasize the application of these technologies to detect plant pathogens by outlining the advantages and disadvantages of each technology in detail.
Collapse
Affiliation(s)
- Han Yih Lau
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, Serdang, Malaysia
| | - Jose R. Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Lau HY, Palanisamy R, Trau M, Botella JR. Molecular inversion probe: a new tool for highly specific detection of plant pathogens. PLoS One 2014; 9:e111182. [PMID: 25343255 PMCID: PMC4208852 DOI: 10.1371/journal.pone.0111182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/28/2014] [Indexed: 11/18/2022] Open
Abstract
Highly specific detection methods, capable of reliably identifying plant pathogens are crucial in plant disease management strategies to reduce losses in agriculture by preventing the spread of diseases. We describe a novel molecular inversion probe (MIP) assay that can be potentially developed into a robust multiplex platform to detect and identify plant pathogens. A MIP has been designed for the plant pathogenic fungus Fusarium oxysporum f.sp. conglutinans and the proof of concept for the efficiency of this technology is provided. We demonstrate that this methodology can detect as little as 2.5 ng of pathogen DNA and is highly specific, being able to accurately differentiate Fusarium oxysporum f.sp. conglutinans from other fungal pathogens such as Botrytis cinerea and even pathogens of the same species such as Fusarium oxysporum f.sp. lycopersici. The MIP assay was able to detect the presence of the pathogen in infected Arabidopsis thaliana plants as soon as the tissues contained minimal amounts of pathogen. MIP methods are intrinsically highly multiplexable and future development of specific MIPs could lead to the establishment of a diagnostic method that could potentially screen infected plants for hundreds of pathogens in a single assay.
Collapse
Affiliation(s)
- Han Yih Lau
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Ramkumar Palanisamy
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Matt Trau
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Jose R. Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Soumya K, Yogita M, Prasanthi Y, Anitha K, Kishor PBK, Jain RK, Mandal B. Molecular characterization of Indian isolate of peanut mottle virus and immunodiagnosis using bacterial expressed core capsid protein. Virusdisease 2014; 25:331-7. [PMID: 25674600 PMCID: PMC4188198 DOI: 10.1007/s13337-014-0210-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022] Open
Abstract
Peanut mottle virus (PeMoV), a seed borne potyvirus was recorded in India in 1978, however the virus was not characterized at molecular level. In the present study, an isolate of PeMoV infecting peanut in southern India was characterized based on host reactions and coat protein (CP) gene sequence, which revealed that the Indian isolate was very close to a peanut isolate reported from Israel and distinct from pea isolate reported from USA. The core region of CP gene that contained majority of the predicted epitopes was successfully expressed (1.75 mg/l) in Escherichia coli as a 22 kDa protein. A high titer polyclonal antibody (PAb) to the expressed core CP was produced, which efficiently detected PeMoV. The antiserum was useful in specific detection of PeMoV as it showed negligible cross reactivity with the other potyviruses e.g., peanut stripe virus, potato virus Y, papaya ringspot virus and onion yellow dwarf virus. The PAb was validated in ELISA using 1,169 field and greenhouse samples of peanut which showed 1.85-26.3 % incidence of PeMoV in peanut seed multiplication field during 2011-2012. This is the first report of immunodiagnosis of PeMoV with a PAb to recombinant core CP of PeMoV.
Collapse
Affiliation(s)
- K. Soumya
- />National Bureau of Plant Genetic Resources, Hyderabad, India
| | - M. Yogita
- />Division of Plant Pathology, Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Y. Prasanthi
- />National Bureau of Plant Genetic Resources, Hyderabad, India
| | - K. Anitha
- />National Bureau of Plant Genetic Resources, Hyderabad, India
| | | | - R. K. Jain
- />Division of Plant Pathology, Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Bikash Mandal
- />Division of Plant Pathology, Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
6
|
Vijayanandraj S, Yogita M, Das A, Ghosh A, Mandal B. Highly efficient immunodiagnosis of Large cardamom chirke virus using the polyclonal antiserum against Escherichia coli expressed recombinant coat protein. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2013; 24:227-34. [PMID: 24426280 DOI: 10.1007/s13337-013-0159-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/17/2013] [Indexed: 10/26/2022]
Abstract
Large cardamom chirke virus (LCCV), genus Macluravirus, family Potyviridae is an important constrain in large cardamom production in India. Purification of LCCV from large cardamom tissues is difficult and therefore immunodiagnostic reagents are not available. In the present study, we have successfully expressed coat protein (CP) gene of LCCV in Escherichia coli. The purification of expressed protein by Ni-NTA affinity chromatography was inefficient due to precipitation of protein during renaturation. We have optimized a simple, inexpensive and efficient method for purification of the expressed CP through gel extraction with 5 % SDS followed by renaturation in Milli-Q water, which resulted in high yield (4.7 mg/ml) and good quality of the protein. A higher titer (1:256,000) polyclonal antibody (PAb) to the recombinant CP was produced, which strongly recognized LCCV in crude leaf extract and showed minimal background reaction with the healthy leaf extract in enzyme linked immunosorbent assay (ELISA) and dot immunobinding assay (DIBA). The sensitivities of the ELISA and DIBA were 5 and 0.1 ng of expressed protein, respectively. Both the ELISA and DIBA were validated with 100 % accuracy in detecting LCCV in field samples. The PAb differentiated Cardamom mosaic virus, another close relative of LCCV. Our study is first to report highly efficient immunodiagnosis with PAb to E. coli expressed recombinant CP of a virus under the genus Macluravirus. The antigen expression construct and PAb developed in the present study will be useful in production of virus free planting materials of large cardamom.
Collapse
Affiliation(s)
- S Vijayanandraj
- Division of Plant Pathology, Advanced Centre for Plant Virology, Indian Agricultural Research Institute (IARI), New Delhi, 110012 India
| | - M Yogita
- Division of Plant Pathology, Advanced Centre for Plant Virology, Indian Agricultural Research Institute (IARI), New Delhi, 110012 India
| | - Amrita Das
- Indian Agricultural Research Institute (IARI), Regional Station, Kalimpong, 734301 West Bengal India
| | - Amalendu Ghosh
- Indian Agricultural Research Institute (IARI), Regional Station, Kalimpong, 734301 West Bengal India
| | - Bikash Mandal
- Division of Plant Pathology, Advanced Centre for Plant Virology, Indian Agricultural Research Institute (IARI), New Delhi, 110012 India
| |
Collapse
|
7
|
Production of polyclonal antibodies against Pelargonium zonate spot virus coat protein expressed in Escherichia coli and application for immunodiagnosis. J Virol Methods 2009; 160:29-37. [PMID: 19397928 DOI: 10.1016/j.jviromet.2009.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 03/13/2009] [Accepted: 04/16/2009] [Indexed: 11/22/2022]
Abstract
Pelargonium zonate spot virus (PZSV) is identified recently in tomato plants in the United States. To develop serological diagnostic tools for the detection of this virus, the production of good quality antibodies is a necessity. The coat protein (CP) gene of a California isolate of PZSV was cloned into a bacterial expression vector (pTriEX-4 Ek/LIC). The plasmid pTriEX-4-PZSV-CP was transformed into Escherichia coli Rosetta 2(DE3)pLacI and the recombinant PZSV-CP was expressed as a fusion protein containing N-terminal hexa-histidine and S tags. Expressed PZSV-CP was purified under denaturing conditions by affinity chromatography yielding 3mg refolded protein per 200mL of bacterial culture, and used as an antigen for raising PZSV-CP antiserum in rabbits. Specificity of the antiserum to PZSV was shown by Western blot and ELISA. When used in Western blot analysis, the antiserum was able to detect the recombinant protein, the PZSV coat protein and PZSV infected plant samples. The antiserum was successfully used in indirect-ELISA at dilutions of up to 1:16,000 to detect PZSV in infected leaf samples. Direct ELISA was successful only with denatured antigens. This is the first report on production of polyclonal antiserum against recombinant coat protein of PZSV and its use for detection and diagnosis of virus using serological methods.
Collapse
|