1
|
Garzón DN, Castillo Y, Navas-Zuloaga MG, Darwin L, Hardin A, Culik N, Yang A, Castillo-Garsow C, Ríos-Soto K, Arriola L, Ghosh A. Dynamics of prion proliferation under combined treatment of pharmacological chaperones and interferons. J Theor Biol 2021; 527:110797. [PMID: 34090904 DOI: 10.1016/j.jtbi.2021.110797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 11/15/2022]
Abstract
Prions are proteins that cause fatal neurodegenerative diseases. The misfolded conformation adopted by prions can be transmitted to other normally folded proteins. Therapeutics to stop prion proliferation have been studied experimentally; however, it is not clear how the combination of different types of treatments can decrease the growth rate of prions in the brain. In this article, we combine the implementation of pharmacological chaperones and interferons to develop a novel model using a non-linear system of ordinary differential equations and study the quantitative effects of these two treatments on the growth rate of prions. This study aims to identify how the two treatments affect prion proliferation, both individually and in tandem. We analyze the model, and qualitative global results on the disease-free and disease equilibria are proved analytically. Numerical simulations, using parameter values from in vivo experiments that provide a pharmaceutically important demonstration of the effects of these two treatments, are presented here. This mathematical model can be used to identify and optimize the best combination of the treatments within their safe ranges.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anji Yang
- University of Shanghai for Science and Technology, China
| | | | | | - Leon Arriola
- Department of Mathematics, University of Wisconsin Whitewater, Whitewater, WI 53190, USA
| | - Aditi Ghosh
- Department of Mathematics, University of Wisconsin Whitewater, Whitewater, WI 53190, USA.
| |
Collapse
|
2
|
Berrone E, Corona C, Mazza M, Costassa EV, Faro ML, Properzi F, Guglielmetti C, Maurella C, Caramelli M, Deregibus MC, Camussi G, Casalone C. Detection of cellular prion protein in exosomes derived from ovine plasma. J Gen Virol 2015; 96:3698-3702. [PMID: 26399471 PMCID: PMC4804764 DOI: 10.1099/jgv.0.000291] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 09/18/2015] [Indexed: 01/01/2023] Open
Abstract
Prion protein (PrP) is present at extremely low levels in the blood of animals and its detection is complicated by the poor sensitivity of current standard methodologies. Interesting results have been obtained with recent advanced technologies that are able to detect minute amounts of the pathological PrP (PrPSc), but their efficiency is reduced by various factors present in blood. In this study, we were able to extract cellular PrP (PrPC) from plasma-derived exosomes by a simple, fast method without the use of differential ultracentrifugation and to visualize it by Western blotting, reducing the presence of most plasma proteins. This result confirms that blood is capable of releasing PrP in association with exosomes and could be useful to better study its role in the pathogenesis of transmissible spongiform encephalopathies.
Collapse
Affiliation(s)
- Elena Berrone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Turin, Italy
| | - Cristiano Corona
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Turin, Italy
| | - Maria Mazza
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Turin, Italy
| | - Elena Vallino Costassa
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Turin, Italy
| | - Monica Lo Faro
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Turin, Italy
| | - Francesca Properzi
- Department of Cellular Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Chiara Guglielmetti
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Turin, Italy
| | - Cristiana Maurella
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Turin, Italy
| | - Maria Caramelli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Turin, Italy
| | - Maria Chiara Deregibus
- Department of Internal Medicine and Molecular Biotechnology Center, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy
| | - Giovanni Camussi
- Department of Internal Medicine and Molecular Biotechnology Center, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Turin, Italy
| |
Collapse
|
3
|
Development of dose-response models of Creutzfeldt-Jakob disease infection in nonhuman primates for assessing the risk of transfusion-transmitted variant Creutzfeldt-Jakob disease. J Virol 2014; 88:13732-6. [PMID: 25231313 DOI: 10.1128/jvi.01805-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Estimates for the risk of transmitting variant Creutzfeldt-Jakob disease (vCJD) via blood transfusion have relied largely on data from rodent experiments, but the relationship between dose (amount of infected blood) and response (vCJD infection) has never been well quantified. The goal of this study was to develop a dose-response model based on nonhuman primate data to better estimate the likelihood of transfusion-transmitted vCJD (TTvCJD) in humans. Our model used dose-response data from nonhuman primates inoculated intracerebrally (i.c.) with brain tissues of patients with sporadic and familial CJD. We analyzed the data statistically by using a beta-Poisson dose-response model. We further adjusted model parameters to account for the differences in infectivity between blood and brain tissue and in transmission efficiency between intravenous (i.v.) and i.c. routes to estimate dose-dependent TTvCJD infection. The model estimates a mean infection rate of 76% among recipients who receive one unit of whole blood collected from an infected donor near the end of the incubation period. The nonhuman primate model provides estimates that are more consistent with those derived from a risk analysis of transfused nonleukoreduced red blood cells in the United Kingdom than prior estimates based on rodent models. IMPORTANCE TTvCJD was recently identified as one of three emerging infectious diseases posing the greatest immediate threat to the safety of the blood supply. Cases of TTvCJD were reported in recipients of nonleukoreduced red blood cells and coagulation factor VIII manufactured from blood of United Kingdom donors. As the quantity of abnormal prions (the causative agent of TTvCJD) varies significantly in different blood components and products, it is necessary to quantify the dose-response relationship for a wide range of doses for the vCJD agent in transfused blood and plasma derivatives. In this paper, we suggest the first mechanistic dose-response model for TTvCJD infection based on data from experiments with nonhuman primates. This new model may improve estimates of the possible risk to humans.
Collapse
|
4
|
Red-backed vole brain promotes highly efficient in vitro amplification of abnormal prion protein from macaque and human brains infected with variant Creutzfeldt-Jakob disease agent. PLoS One 2013; 8:e78710. [PMID: 24205298 PMCID: PMC3813480 DOI: 10.1371/journal.pone.0078710] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/16/2013] [Indexed: 12/01/2022] Open
Abstract
Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE) would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA) to amplify abnormal prion protein (PrPTSE) from highly diluted variant Creutzfeldt-Jakob disease (vCJD)-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrPTSE in tissues and blood. Macaque vCJD PrPTSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA). Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV), a close relative of the bank vole, seeded with macaque vCJD PrPTSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N). We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrPTSE. Meadow vole brain (170N/N PrP genotype) was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrPTSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrPTSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrPTSE was more permissive than human PrPTSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrPTSE from brains of humans and macaques with vCJD. PrPTSE signals were reproducibly detected by Western blot in dilutions through 10-12 of vCJD-infected 10% brain homogenates. This is the first report showing PrPTSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect PrPTSE in vCJD-infected human and macaque blood.
Collapse
|
5
|
Makarava N, Savtchenko R, Alexeeva I, Rohwer RG, Baskakov IV. Fast and ultrasensitive method for quantitating prion infectivity titre. Nat Commun 2012; 3:741. [PMID: 22415832 PMCID: PMC3518416 DOI: 10.1038/ncomms1730] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 02/06/2012] [Indexed: 12/19/2022] Open
Abstract
Bioassay by end-point dilution has been used for decades for routine determination of prion infectivity titre. Here we show that the new protein misfolding cyclic amplification with beads (PMCAb) technique can be used to estimate titres of the infection-specific forms of the prion protein with a higher level of precision and in 3-6 days as opposed to 2 years, when compared with the bioassay. For two hamster strains, 263 K and SSLOW, the median reactive doses determined by PCMAb (PMCAb(50)) were found to be 10(12.8) and 10(12.2) per gram of brain tissue, which are 160- and 4,000-fold higher than the corresponding median infectious dose (ID(50)) values measured by bioassay. The 10(2)- to 10(3)-fold differences between ID(50) and PMCAb(50) values could be due to a large excess of PMCAb-reactive prion protein seeds with little or no infectivity. Alternatively, the differences between ID(50) and PMCAb(50) could be due to higher rate of clearance of infection-specific prion protein seeds in animals versus PMCAb reactions. A well-calibrated PMCAb reaction can be an efficient and cost-effective method for the estimation of infection-specific prion protein titre.
Collapse
Affiliation(s)
- Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland, 725 W. Lombard Street, Baltimore 21201, USA
| | | | | | | | | |
Collapse
|
6
|
Cancelas JA, Rugg N, Pratt PG, Worsham DN, Pehta JC, Banks K, Davenport RD, Judd WJ. Infusion of P-Capt prion-filtered red blood cell products demonstrate acceptable in vivo viability and no evidence of neoantigen formation. Transfusion 2011; 51:2228-36. [PMID: 21492178 DOI: 10.1111/j.1537-2995.2011.03133.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Transmission of variant Creutzfeldt-Jacob disease (vCJD) is a major concern in blood transfusion. The P-Capt filter has been shown to remove around 4 log ID(50) prion infectivity from prion-spiked human red blood cells (RBCs). STUDY DESIGN AND METHODS Two independent, single-center, randomized, open-label studies were designed to analyze the safety of P-Capt-filtered RBCs. RBCs prepared from leukoreduced whole blood from 43 eligible subjects were randomly assigned to P-Capt filtration and/or storage in plasma or SAGM and stored for 28 or 42 days. Stored RBCs were analyzed for in vivo 24-hour recovery, hemolysis, metabolic variables, blood group antigen expression, neoantigen formation, and safety after autologous infusion. RESULTS Mean P-Capt filtration times for leukoreduced RBCs were 41 (SAGM) to 51 (plasma) minutes. Thirteen of 14 subjects receiving P-Capt-filtered RBCs had 24-hour RBC recoveries of 75% or more after 42-day storage, with a mean hemolysis of less than 0.6%. No loss of RBC antigen expression or formation of neoantigens was observed. In both studies, RBCs had white blood cell counts of less than 1 × 10(6)/unit after leukofiltration. P-Capt prion filtration provided an additional greater than 0.8 log leukoreduction. No serious or unexpected adverse events were observed after infusion of P-Capt-filtered full-volume RBC units. CONCLUSIONS P-Capt-filtered, stored RBCs demonstrated acceptable viability and no detectable neoantigen expression, immunogenic responses. or safety issues after infusion of a complete unit. The additional filtration time and modest reduction in RBC content are within acceptable levels for implementation in countries with transfusion transmission of vCJD.
Collapse
Affiliation(s)
- Jose A Cancelas
- Hoxworth Blood Center, University of Cincinnati, Cincinnati, Ohio 45267-0055, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Atreya C, Nakhasi H, Mied P, Epstein J, Hughes J, Gwinn M, Kleinman S, Dodd R, Stramer S, Walderhaug M, Ganz P, Goodrich R, Tibbetts C, Asher D. FDA workshop on emerging infectious diseases: evaluating emerging infectious diseases (EIDs) for transfusion safety. Transfusion 2011; 51:1855-71. [DOI: 10.1111/j.1537-2995.2011.03084.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Affiliation(s)
- Luisa Gregori
- Food and Drug Administration, Rockville, MD 20852, USA.
| |
Collapse
|
9
|
Wilham JM, Orrú CD, Bessen RA, Atarashi R, Sano K, Race B, Meade-White KD, Taubner LM, Timmes A, Caughey B. Rapid end-point quantitation of prion seeding activity with sensitivity comparable to bioassays. PLoS Pathog 2010; 6:e1001217. [PMID: 21152012 PMCID: PMC2996325 DOI: 10.1371/journal.ppat.1001217] [Citation(s) in RCA: 371] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 11/03/2010] [Indexed: 11/18/2022] Open
Abstract
A major problem for the effective diagnosis and management of prion diseases is the lack of rapid high-throughput assays to measure low levels of prions. Such measurements have typically required prolonged bioassays in animals. Highly sensitive, but generally non-quantitative, prion detection methods have been developed based on prions' ability to seed the conversion of normally soluble protease-sensitive forms of prion protein to protease-resistant and/or amyloid fibrillar forms. Here we describe an approach for estimating the relative amount of prions using a new prion seeding assay called real-time quaking induced conversion assay (RT-QuIC). The underlying reaction blends aspects of the previously described quaking-induced conversion (QuIC) and amyloid seeding assay (ASA) methods and involves prion-seeded conversion of the alpha helix-rich form of bacterially expressed recombinant PrPC to a beta sheet-rich amyloid fibrillar form. The RT-QuIC is as sensitive as the animal bioassay, but can be accomplished in 2 days or less. Analogous to end-point dilution animal bioassays, this approach involves testing of serial dilutions of samples and statistically estimating the seeding dose (SD) giving positive responses in 50% of replicate reactions (SD50). Brain tissue from 263K scrapie-affected hamsters gave SD50 values of 1011-1012/g, making the RT-QuIC similar in sensitivity to end-point dilution bioassays. Analysis of bioassay-positive nasal lavages from hamsters affected with transmissible mink encephalopathy gave SD50 values of 103.5–105.7/ml, showing that nasal cavities release substantial prion infectivity that can be rapidly detected. Cerebral spinal fluid from 263K scrapie-affected hamsters contained prion SD50 values of 102.0–102.9/ml. RT-QuIC assay also discriminated deer chronic wasting disease and sheep scrapie brain samples from normal control samples. In principle, end-point dilution quantitation can be applied to many types of prion and amyloid seeding assays. End point dilution RT-QuIC provides a sensitive, rapid, quantitative, and high throughput assay of prion seeding activity. Prion diseases are deadly infectious neurodegenerative disorders of mammals which involve the misfolding of host prion protein. To better manage these diseases, we need to be able to detect and quantify the infectious particles, or prions, in biological samples. However, current tests lack the sensitivity, speed and/or quantitative capabilities required for many important applications in medicine, agriculture, wildlife biology and research. To address this problem, we have developed a new prion assay that is highly sensitive, rapid, and quantitative. This assay takes advantage of the ability of miniscule amounts of infectious prions to seed the misfolding of large excesses of normal prion protein in test tube reactions. Quantitation is achieved by testing a range of sample dilutions and determining loss of seeding activity, i.e. the end-point dilution. Similar analyses have long been used to quantify prions by inoculation into animals; however, such bioassays take months or years to perform and are both animal-intensive and expensive. Our new method provides a more practical means of detecting and quantifying prions. So far, we have applied this assay to prions from sheep, deer, and hamsters, and have found surprisingly high levels of prions in the nasal and cerebral spinal fluids of infected hamsters.
Collapse
Affiliation(s)
- Jason M. Wilham
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, Montana, United States of America
| | - Christina D. Orrú
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, Montana, United States of America
- Department of Biomedical Sciences and Technologies, University of Cagliari, Monserrato, Italy
| | - Richard A. Bessen
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Ryuichiro Atarashi
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Kyushu, Japan
| | - Kazunori Sano
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Kyushu, Japan
| | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, Montana, United States of America
| | - Kimberly D. Meade-White
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, Montana, United States of America
| | - Lara M. Taubner
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, Montana, United States of America
| | - Andrew Timmes
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, Montana, United States of America
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
10
|
Dagdanova A, Ilchenko S, Notari S, Yang Q, Obrenovich ME, Hatcher K, McAnulty P, Huang L, Zou W, Kong Q, Gambetti P, Chen SG. Characterization of the prion protein in human urine. J Biol Chem 2010; 285:30489-95. [PMID: 20670940 DOI: 10.1074/jbc.m110.161794] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The presence of the prion protein (PrP) in normal human urine is controversial and currently inconclusive. This issue has taken a special relevance because prion infectivity has been demonstrated in urine of animals carrying experimental or naturally occurring prion diseases, but the actual presence and tissue origin of the infectious prion have not been determined. We used immunoprecipitation, one- and two-dimensional electrophoresis, and mass spectrometry to prove definitely the presence of PrP in human urine and its post-translational modifications. We show that urinary PrP (uPrP) is truncated mainly at residue 112 but also at other residues up to 122. This truncation makes uPrP undetectable with some commonly used antibodies to PrP. uPrP is glycosylated and carries an anchor which, at variance with that of cellular PrP, lacks the inositol-associated phospholipid moiety, indicating that uPrP is probably shed from the cell surface. The detailed characterization of uPrP reported here definitely proves the presence of PrP in human urine and will help determine the origin of prion infectivity in urine.
Collapse
Affiliation(s)
- Ayuna Dagdanova
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Neisser-Svae A, Bailey A, Gregori L, Heger A, Jordan S, Behizad M, Reichl H, Römisch J, Svae TE. Prion removal effect of a specific affinity ligand introduced into the manufacturing process of the pharmaceutical quality solvent/detergent (S/D)-treated plasma OctaplasLG®. Vox Sang 2009; 97:226-33. [DOI: 10.1111/j.1423-0410.2009.01206.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Rees HC, Maddison BC, Owen JP, Whitelam GC, Gough KC. Concentration of disease-associated prion protein with silicon dioxide. Mol Biotechnol 2008; 41:254-62. [PMID: 19058035 DOI: 10.1007/s12033-008-9129-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 11/15/2008] [Indexed: 11/24/2022]
Abstract
Reagents that can precipitate the disease-associated prion protein (PrP(Sc)) are vital for the development of high sensitivity tests to detect low levels of this disease marker in biological material. Here, a range of minerals are shown to precipitate both ovine cellular prion protein (PrP(C)) and ovine scrapie PrP(Sc). The precipitation of prion protein with silicon dioxide is unaffected by PrP(Sc) strain or host species and the method can be used to precipitate bovine BSE. This method can reliably concentrate protease-resistant ovine PrP(Sc) (PrP(res)) derived from 1.69 microg of brain protein from a clinically infected animal diluted into either 50 ml of buffer or 15 ml of plasma. The introduction of a SiO(2) precipitation step into the immunological detection of PrP(res) increased detection sensitivity by over 1,500-fold. Minerals such as SiO(2) are readily available, low cost reagents with generic application to the concentration of diseases-associated prion proteins.
Collapse
Affiliation(s)
- Helen C Rees
- Department of Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | | | | | | | | |
Collapse
|
13
|
Race B, Meade-White K, Oldstone MBA, Race R, Chesebro B. Detection of prion infectivity in fat tissues of scrapie-infected mice. PLoS Pathog 2008; 4:e1000232. [PMID: 19057664 PMCID: PMC2585054 DOI: 10.1371/journal.ppat.1000232] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 11/05/2008] [Indexed: 02/04/2023] Open
Abstract
Distribution of prion infectivity in organs and tissues is important in understanding prion disease pathogenesis and designing strategies to prevent prion infection in animals and humans. Transmission of prion disease from cattle to humans resulted in banning human consumption of ruminant nervous system and certain other tissues. In the present study, we surveyed tissue distribution of prion infectivity in mice with prion disease. We show for the first time detection of infectivity in white and brown fat. Since high amounts of ruminant fat are consumed by humans and also incorporated into animal feed, fat-containing tissues may pose a previously unappreciated hazard for spread of prion infection. Prion diseases, also known as transmissible spongiform encephalopathies, are infectious progressive fatal neurodegenerative diseases which affect humans as well as wild and domestic animals. Distribution of prion infectivity in organs and tissues is important in understanding prion disease pathogenesis and designing strategies to prevent prion infection in animals and humans. We show for the first time the presence of prion infectivity in white fat and brown fat tissues of mice with prion disease. Our results suggest that fat tissues of domestic or wild animals infected with prions may pose an unappreciated hazard for spread of infection to humans or domestic animals. The presence of prion infectivity in fat suggests that additional consideration may be required to eliminate from the food chain any fat from ruminants suspected of exposure to or infection with prions. Thus, this finding has implications for public health, food safety, and prion disease prevention strategies.
Collapse
Affiliation(s)
- Brent Race
- Laboratory of Persistent Virus Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Kimberly Meade-White
- Laboratory of Persistent Virus Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Michael B. A. Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, LaJolla, California, United States of America
| | - Richard Race
- Laboratory of Persistent Virus Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Bruce Chesebro
- Laboratory of Persistent Virus Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|