1
|
Lian Z, Liu P, Zhu Z, Sun Z, Yu X, Deng J, Li R, Li X, Tian K. Isolation and Characterization of a Novel Recombinant Classical Pseudorabies Virus in the Context of the Variant Strains Pandemic in China. Viruses 2023; 15:1966. [PMID: 37766372 PMCID: PMC10536572 DOI: 10.3390/v15091966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Pseudorabies virus (PRV) variants were discovered in immunized pigs in Northern China and have become the dominant strains since 2011, which caused huge economic losses. In this study, a classical PRV strain was successfully isolated in a PRV gE positive swine farm. The complete genome sequence was obtained using a high-throughput sequencing method and the virus was named JS-2020. The nucleotide homology analysis and phylogenetic tree based on complete genome sequences or gC gene showed that the JS-2020 strain was relatively close to the classical Ea strain in genotype II clade. However, a large number of amino acid variations occurred in the JS-2020 strain compared with the Ea strain, including multiple immunogenic and virulence-related genes. In particular, the gE protein of JS-2020 was similar to earlier Chinese PRV strains without Aspartate insertion. However, the amino acid variations analysis based on major immunogenic and virulence-related genes showed that the JS-2020 strain was not only homologous with earlier PRV strains, but also with strains isolated in recent years. Moreover, the JS-2020 strain was identified as a recombinant between the GXGG-2016 and HLJ-2013 strains. The pathogenicity analysis proved that the PRV JS-2020 strain has typical neurogenic infections and a strong pathogenicity in mice. Together, a novel recombinant classical strain was isolated and characterized in the context of the PRV variant pandemic in China. This study provided some valuable information for the study of the evolution of PRV in China.
Collapse
Affiliation(s)
- Zhengmin Lian
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Panrao Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhenbang Zhu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhe Sun
- Luoyang Putai Biotech Co., Ltd., Luoyang 471003, China
| | - Xiuling Yu
- Luoyang Putai Biotech Co., Ltd., Luoyang 471003, China
| | - Junhua Deng
- Luoyang Putai Biotech Co., Ltd., Luoyang 471003, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiangdong Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Luoyang Putai Biotech Co., Ltd., Luoyang 471003, China
| | - Kegong Tian
- Luoyang Putai Biotech Co., Ltd., Luoyang 471003, China
| |
Collapse
|
2
|
Pseudorabies Virus: From Pathogenesis to Prevention Strategies. Viruses 2022; 14:v14081638. [PMID: 36016260 PMCID: PMC9414054 DOI: 10.3390/v14081638] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudorabies (PR), also called Aujeszky’s disease (AD), is a highly infectious viral disease which is caused by pseudorabies virus (PRV). It has been nearly 200 years since the first PR case occurred. Currently, the virus can infect human beings and various mammals, including pigs, sheep, dogs, rabbits, rodents, cattle and cats, and among them, pigs are the only natural host of PRV infection. PRV is characterized by reproductive failure in pregnant sows, nervous disorders in newborn piglets, and respiratory distress in growing pigs, resulting in serious economic losses to the pig industry worldwide. Due to the extensive application of the attenuated vaccine containing the Bartha-K61 strain, PR was well controlled. With the variation of PRV strain, PR re-emerged and rapidly spread in some countries, especially China. Although researchers have been committed to the design of diagnostic methods and the development of vaccines in recent years, PR is still an important infectious disease and is widely prevalent in the global pig industry. In this review, we introduce the structural composition and life cycle of PRV virions and then discuss the latest findings on PRV pathogenesis, following the molecular characteristic of PRV and the summary of existing diagnosis methods. Subsequently, we also focus on the latest clinical progress in the prevention and control of PRV infection via the development of vaccines, traditional herbal medicines and novel small RNAs. Lastly, we provide an outlook on PRV eradication.
Collapse
|
3
|
Tu L, Lian J, Pang Y, Liu C, Cui S, Lin W. Retrospective detection and phylogenetic analysis of pseudorabies virus in dogs in China. Arch Virol 2020; 166:91-100. [PMID: 33074409 DOI: 10.1007/s00705-020-04848-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/07/2020] [Indexed: 11/25/2022]
Abstract
Pseudorabies virus (PRV), the causative agent of Aujeszky's disease, has gained increased attention in China in recent years as a result of a recent outbreak of pseudorabies. The causative agent has a wide spectrum of hosts, including pigs, cattle, sheep, dogs, cats, bats, bears, and even some avian species. Although dog-related cases of pseudorabies have been reported regularly, many cases are overlooked, and few PRV strains are isolated because death occurs rapidly after PRV infection and veterinarians often do not test for PRV in dogs. Here, we performed a retrospective detection of PRV in dogs from July 2017 to December 2018. We found that PRV (including gE-deleted strains, classical strains, and variant strains) is prevalent in dogs regardless of season and region and that the epidemic PRV strains in dogs share high sequence similarity with gC and gE genes of swine epidemic strains and commercial vaccine strains. Collectively, our findings underscore the importance of PRV surveillance in dogs, which is beneficial for understanding the epidemiology of PRV in dogs and assists in efforts aimed at effectively controlling this disease.
Collapse
Affiliation(s)
- Lu Tu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Jiamin Lian
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yanling Pang
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Cun Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Shangjin Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Wencheng Lin
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
4
|
Zhang P, Lv L, Sun H, Li S, Fan H, Wang X, Bai J, Jiang P. Identification of linear B cell epitope on gB, gC, and gE proteins of porcine pseudorabies virus using monoclonal antibodies. Vet Microbiol 2019; 234:83-91. [PMID: 31213277 DOI: 10.1016/j.vetmic.2019.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/28/2022]
Abstract
Since 2011, there have been outbreaks of pseudorabies (PR) in several pig farms despite vaccination coverage, which causes substantial economic loss to the swine industry in China. The emergence of a pseudorabies virusvariant strain with high virulence and antigenic variation (e.g., PRV ZJ01), is considered to be the primary cause. In this study, truncated gB, gC, and gE of PRV ZJ01 was expressed and used to generate seven monoclonal antibodies (mAbs) against gB, gC, or gE. An indirect immunofluorescence assay (IFA) revealed that these mAbs were specific against PRV. Subsequently we identified the B cell epitopes recognized by these mAbs by Western blot. The mAbs 5A2 and 6G5 against gB recognized the same B cell linear epitope at 576SAVATAA582, the mAb 5D10 against gC recognized the B cell linear epitope at 134GETFE138, mAb 7C5 against gC recognized the B cell linear epitope at 143RRGRFRSPDAD153, and mAbs 3E1, 3H8, and 4D2 against gE recognized the same B cell linear epitope at 151IGDYL155 of gE. Biological information analysis showed that these B cell linear epitopes are highly conserved among different PRV isolates and the epitope 143RRGRFRSPDAD153 with a high antigenic index and high hydrophilicity, fully exposed on the surface of the gC, is likely to be an important B cell epitope. These mAbs and their defined epitopes may provide useful tools for the study of the structure and function of the PRV protein, analysis of antigenic epitope characteristics, and establishment of antibody detection methods.
Collapse
Affiliation(s)
- Panpan Zhang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Lv
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haifeng Sun
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shihai Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Fan
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianwei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
5
|
Molecular epidemiology of outbreak-associated pseudorabies virus (PRV) strains in central China. Virus Genes 2015; 50:401-9. [DOI: 10.1007/s11262-015-1190-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/13/2015] [Indexed: 10/23/2022]
|
6
|
Kong H, Zhang K, Liu Y, Shang Y, Wu B, Liu X. Attenuated live vaccine (Bartha-K16) caused pseudorabies (Aujeszky’s disease) in sheep. Vet Res Commun 2013; 37:329-32. [DOI: 10.1007/s11259-013-9568-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2013] [Indexed: 11/30/2022]
|
7
|
Generation of an infectious clone of duck enteritis virus (DEV) and of a vectored DEV expressing hemagglutinin of H5N1 avian influenza virus. Virus Res 2011; 159:23-31. [DOI: 10.1016/j.virusres.2011.04.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/19/2011] [Accepted: 04/19/2011] [Indexed: 12/27/2022]
|
8
|
Molecular epidemiology of Brazilian pseudorabies viral isolates. Vet Microbiol 2009; 141:238-45. [PMID: 19828266 DOI: 10.1016/j.vetmic.2009.09.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 09/09/2009] [Accepted: 09/22/2009] [Indexed: 11/23/2022]
Abstract
Pseudorabies is a disease caused by pseudorabies virus (PRV) and is responsible for considerable economic losses in the swine industry. The objective of this work was to use molecular epidemiology as a tool to facilitate the study of PRV outbreaks in Brazil. The standard PRV strain Shope, the vaccine strain Bartha and isolates from the south and the southeast regions of Brazil, were amplified for gE and gC partial genes by PCR. Results indicated that Brazilian PRV isolates are grouped in two clusters, A and B, except for one isolate that grouped with Bartha and Shope. Most Brazilian PRV isolates belonged to cluster B and diverged from virus isolated from other countries.
Collapse
|