1
|
Ligozzi M, Galia L, Carelli M, Piccaluga PP, Diani E, Gibellini D. Duplex real-time polymerase chain reaction assay for the detection of human KIPyV and WUPyV in nasopharyngeal aspirate pediatric samples. Mol Cell Probes 2018; 40:13-18. [PMID: 29883628 PMCID: PMC7172048 DOI: 10.1016/j.mcp.2018.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/25/2018] [Accepted: 06/04/2018] [Indexed: 12/09/2022]
Abstract
In this study, we describe a duplex real-time PCR assay for the simultaneous detection of KIPyV and WUPyV polyomaviruses based on TaqMan probes. This assay detected 500 copies/mL both for KIPyV and WUPyV in 100% of tested positive samples. We assessed this technique on 482 nasopharyngeal aspirate specimens from hospitalized pediatric patients with respiratory symptoms, previously analyzed with commercial multiplex assay for 16 major respiratory viruses. Our assay detected KIPyV genome in 15 out of 482 samples (3.1%) and WUPyV genome in 24 out of 482 samples (4.9%), respectively, and in three samples the coinfection of the two viruses was found. Interestingly, 29 out of 36 of samples with KIPyV and/or WUPyV infection exhibited a co-infection with one or more respiratory viruses confirming that KIPyV and WUPyV were often detected in association to other viral infections. Of note, KIPyV and WUPyV were detected singularly in 4 out of 15 cases and 3 out of 24 cases, respectively, suggesting a possible direct role of these viruses in the respiratory diseases. In conclusion, this method could be taken into account as an alternative technical approach to detect KIPyV and/or WUPyV in respiratory samples for epidemiological and diagnostic analyses. Duplex real-time PCR assay for the detection of human KIPyV and WUPyV was assessed. This assay was evaluated on nasopharyngeal aspirate samples from pediatric patients. KIPyV and WUPyV were detected in 3.1% and 4.9% of samples, respectively.
Collapse
Affiliation(s)
- Marco Ligozzi
- Microbiology and Virology Unit, Department of Diagnostics and Public Health, University of Verona, Strada delle Grazie 8, 37134 Verona, Italy.
| | - Liliana Galia
- Microbiology and Virology Unit, Department of Diagnostics and Public Health, University of Verona, Strada delle Grazie 8, 37134 Verona, Italy
| | - Maria Carelli
- Microbiology and Virology Unit, Department of Diagnostics and Public Health, University of Verona, Strada delle Grazie 8, 37134 Verona, Italy
| | - Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy; Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Erica Diani
- Microbiology and Virology Unit, Department of Diagnostics and Public Health, University of Verona, Strada delle Grazie 8, 37134 Verona, Italy
| | - Davide Gibellini
- Microbiology and Virology Unit, Department of Diagnostics and Public Health, University of Verona, Strada delle Grazie 8, 37134 Verona, Italy
| |
Collapse
|
2
|
Balboni A, Dondi F, Prosperi S, Battilani M. Development of a SYBR Green real-time PCR assay with melting curve analysis for simultaneous detection and differentiation of canine adenovirus type 1 and type 2. J Virol Methods 2015; 222:34-40. [PMID: 26028428 DOI: 10.1016/j.jviromet.2015.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/11/2015] [Accepted: 05/21/2015] [Indexed: 11/29/2022]
Abstract
Canine adenovirus type 1 (CAdV-1) and canine adenovirus type 2 (CAdV-2) cause infectious canine hepatitis (ICH) and infectious tracheobronchitis (ITB) in dogs, respectively. Cases of ICH have been documented in recent years and recent surveys have demonstrated a wide percentage of asymptomatic CAdV-1 infection in the canine population. Since both CAdV types are detectable in the same biological matrices, and viral coinfection with CAdV-1 and CAdV-2 are reported with high frequency, it is urgent to have available a rapid, highly sensitive and specific assay for the diagnosis of CAdV infection and distinction between CAdV-1 and CAdV-2. In order to detect canine adenovirus in biological samples and to rapidly distinguish the two viral types, a SYBR Green real-time PCR assay was optimized to discriminate CAdV-1 and CAdV-2 via a melting curve analysis. The developed assay showed high sensitivity and reproducibility and was highly efficient and specific in discriminating the two CAdV types. This reliable and rapid technique may represent a simple, useful and economic option for simultaneous CAdV types detection, which would be feasible and attractive for all diagnostic laboratories, both for clinical purposes and for epidemiological investigations.
Collapse
Affiliation(s)
- Andrea Balboni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia (BO), Italy
| | - Francesco Dondi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia (BO), Italy
| | - Santino Prosperi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia (BO), Italy
| | - Mara Battilani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia (BO), Italy.
| |
Collapse
|
3
|
Mahony JB, Petrich A, Smieja M. Molecular diagnosis of respiratory virus infections. Crit Rev Clin Lab Sci 2012; 48:217-49. [PMID: 22185616 DOI: 10.3109/10408363.2011.640976] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The appearance of eight new respiratory viruses, including the SARS coronavirus in 2003 and swine-origin influenza A/H1N1 in 2009, in the human population in the past nine years has tested the ability of virology laboratories to develop diagnostic tests to identify these viruses. Nucleic acid based amplification tests (NATs) for respiratory viruses were first introduced two decades ago and today are utilized for the detection of both conventional and emerging viruses. These tests are more sensitive than other diagnostic approaches, including virus isolation in cell culture, shell vial culture (SVC), antigen detection by direct fluorescent antibody (DFA) staining, and rapid enzyme immunoassay (EIA), and now form the backbone of clinical virology laboratory testing around the world. NATs not only provide fast, accurate and sensitive detection of respiratory viruses in clinical specimens but also have increased our understanding of the epidemiology of both new emerging viruses such as the pandemic H1N1 influenza virus of 2009, and conventional viruses such as the common cold viruses, including rhinovirus and coronavirus. Multiplex polymerase chain reaction (PCR) assays introduced in the last five years detect up to 19 different viruses in a single test. Several multiplex PCR tests are now commercially available and tests are working their way into clinical laboratories. The final chapter in the evolution of respiratory virus diagnostics has been the addition of allelic discrimination and detection of single nucleotide polymorphisms associated with antiviral resistance. These assays are now being multiplexed with primary detection and subtyping assays, especially in the case of influenza virus. These resistance assays, together with viral load assays, will enable clinical laboratories to provide physicians with new and important information for optimal treatment of respiratory virus infections.
Collapse
Affiliation(s)
- James B Mahony
- M.G. DeGroote Institute for Infectious Disease Research, St. Joseph’s Healthcare, Hamilton, Canada.
| | | | | |
Collapse
|
4
|
Payungporn S, Poomipak W, Makkoch J, Rianthavorn P, Theamboonlers A, Poovorawan Y. Detection of oseltamivir sensitive/resistant strains of pandemic influenza A virus (H1N1) from patients admitted to hospitals in Thailand. J Virol Methods 2011; 177:133-9. [PMID: 21820468 PMCID: PMC3391650 DOI: 10.1016/j.jviromet.2011.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 07/14/2011] [Accepted: 07/19/2011] [Indexed: 11/24/2022]
Abstract
Oseltamivir has been used widely for prophylaxis or treatment during outbreaks of the pandemic influenza virus (H1N1) in several countries. The aim of this study was to develop a real-time RT-PCR (reverse transcription-polymerase chain reaction) to be applied for detection and monitoring of the oseltamivir resistant strains of this virus during three outbreaks (May 2009 to October 2010) in Thailand. The real-time RT-PCR assay for detecting H275Y proved highly specific for the pandemic influenza virus (H1N1) as no cross-amplification was detected with other respiratory viruses or human total RNA. The assay was also highly sensitive with a detection limit as low as 100 copies/μL for both wild-type and resistant strains. The performance of the assay was evaluated in terms of amplification efficiency (100%). The results obtained by real-time RT-PCR were in complete agreement with direct nucleotide sequencing. However, real-time RT-PCR provided more detail on the relative quantities of ratios between resistant and sensitive strains in each individual. The results revealed that four of 1288 (0.31%) patients were infected with the oseltamivir resistant strain. The number of patients infected by resistant strains was higher during the third (0.61%) and second (0.24%) waves than during the first (0%) outbreak. In conclusion, the real-time RT-PCR assay for H275Y detection is advantageous because it is specific, sensitive, and provides quantitative data. And it would be useful for large-scale testing and monitoring of oseltamivir resistant strains of the pandemic influenza A virus (H1N1).
Collapse
Affiliation(s)
- Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wittaya Poomipak
- Center of Excellence in Clinical virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jarika Makkoch
- Center of Excellence in Clinical virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pornpimol Rianthavorn
- Center of Excellence in Clinical virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Apiradee Theamboonlers
- Center of Excellence in Clinical virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Mahony JB. Nucleic acid amplification-based diagnosis of respiratory virus infections. Expert Rev Anti Infect Ther 2011; 8:1273-92. [PMID: 21073292 DOI: 10.1586/eri.10.121] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The appearance of eight new respiratory viruses in the human population in the past 9 years, including two new pandemics (SARS coronavirus in 2003 and swine-origin influenza A/H1N1 in 2009), has tested the ability of virology laboratories to develop diagnostic tests to identify these viruses. Nucleic acid amplification tests (NATs) that first appeared two decades ago have been developed for both conventional and emerging viruses and now form the backbone of the clinical laboratory. NATs provide fast, accurate and sensitive detection of respiratory viruses and have significantly increased our understanding of the epidemiology of these viruses. Multiplex PCR assays have been introduced recently and several commercial tests are now available. The final chapter in the evolution of respiratory virus diagnostics will be the addition of allelic discrimination and detection of single nucleotide polymorphisms associated with antiviral resistance to multiplex assays. These resistance assays together with new viral load tests will enable clinical laboratories to provide physicians with important information for optimal treatment of patients.
Collapse
Affiliation(s)
- James B Mahony
- Regional Virology Laboratory, St. Joseph's Healthcare Hamilton, 50 Charlton Ave. East, Hamilton, ON, L8N 4A6, Canada.
| |
Collapse
|
6
|
Johnson EM. Structural evaluation of new human polyomaviruses provides clues to pathobiology. Trends Microbiol 2010; 18:215-23. [PMID: 20176487 DOI: 10.1016/j.tim.2010.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 01/19/2010] [Accepted: 01/28/2010] [Indexed: 12/17/2022]
Abstract
In the past three years, remarkable discoveries have added three new human polyomaviruses (KI virus (KIV), WU virus (WUV) and Merkel cell virus (MCV)) to a class that previously had only two disease-causing members (BK virus (BKV) and JC virus (JCV)) identified. Two monkey polyomaviruses, simian virus (SV)40 and B-cell lymphotropic polyomavirus (LPV) are also present in humans. KIV and WUV lack the agnoprotein coding sequence and regulatory micro (mi)RNA clusters of BKV, JCV and SV40. MCV lacks the agnoprotein sequence but generates miRNAs. KIV, WUV and MCV are all widespread in humans. Although they have distinctive tissue tropisms, all these viruses are probably acquired in childhood. Of these viruses, only MCV has thus far been strongly linked to cancer. Marshalled evidence from diverse sources implicates MCV as an etiological agent of Merkel cell carcinoma. This review compares the structural features of the new and previously known polyomaviruses, with the aim of identifying approaches to molecular pathology.
Collapse
Affiliation(s)
- Edward M Johnson
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA.
| |
Collapse
|
7
|
Bergallo M, Terlizzi ME, Astegiano S, Ciotti M, Babakir-Mina M, Perno CF, Cavallo R, Costa C. Real time PCR TaqMan assays for detection of polyomaviruses KIV and WUV in clinical samples. J Virol Methods 2009; 162:69-74. [PMID: 19646480 PMCID: PMC7119675 DOI: 10.1016/j.jviromet.2009.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 07/14/2009] [Accepted: 07/21/2009] [Indexed: 11/23/2022]
Abstract
Recently, polyomaviruses KI and WU were identified in the airways of patients with acute respiratory symptoms. The epidemiology and pathogenesis of these two viruses are not fully understood, and the development of molecular assays, such as Real Time PCR, was useful for examining their biology and role in different clinical syndromes. The evaluation of different target regions for the amplification of polyomaviruses KI and WU, comparing published primer/probe sets and sets designed in the laboratory is described and was used for testing 175 clinical specimens (84 stools and 91 tonsils). The results showed that the laboratory designs were more sensitive for the detection of polyomaviruses KI and WU DNA in clinical samples. The choice of the primer/probe set, and primarily of the region for amplification, may be relevant for understanding the pathogenic role of viruses such as polyomaviruses KI and WU.
Collapse
Affiliation(s)
- Massimiliano Bergallo
- Department of Public Health and Microbiology, Virology Unit, University of Turin, Via Santena 9, 10126 Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|